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SUMMARY

A wind tunnel model of a supersonic V/STOL fighter configura-
tion has been tested to measure the aerodynamic interaction
effects which can result from geometrically close-coupled propul-
sion system/airframe components. The approach was to configure
the model to represent two different test techniques. One was a
conventional test technique composed of two test modes. In the
Flow-Through mode, absolute configuration aerodynamics are
measured, including inlet/airframe interactions. In the Jet-
Effects mode, incremental nozzle/airframe interactions are
measured. The other test technique is a propulsion simulator
approach, where a sub-scale, externally powered engine is mounted
in the model. This allows proper measurement of inlet/airframe

and nozzle/airframe interactions simultaneously.

Comparison of the measured aerodynamic characteristics
hetween the two test techniques is a direct indication of the
extent to which inlet and nozzle flowfields are coupled together.
If sionificant coupling does exist, there will bhe disaareement
between the two data sets. The simulator test technigue may then
be required in the future to properly measure the aerodynamic

characteristics of compact fighter configurations.

Measurement of these propulsion/airframe interaction effects
was carried out in -a three phase experimental program, sponsored
by the NASA-Ames Research Center. Conceptual model design was
accomplished in Phase 1, detailed model design and fabrication in

Phase 2, and high speed testing in Phase 3.

The aerodynamic configuration tested was a canard/wing con-
cept designed for high transonic maneuverability, employing
non-axisymmetric, vectorable exhaust nozzles 1located near the

wina trailing edge.
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The overall character of the aerodynamic flowfield, includ-
ino the interactions due to inlet/nozzle couplinag, were quanti-
fied by comparinag force balance data between the different test
modes, and by comparing static pressure distributions over the
entire model surface. The purpose of this Volume II report is to
document the basic force and moment dJdata in detail. The Volume I
report documents the pressure data, Reference 1. All of the
analysis for both pressure and force and moment data is presented

in the Volume III Test Analysis Report, Reference 2.




ORIGINAL PAGE IS
OE POOR QUALITY 1. INTRODUCTION

Many of the configurations proposed for advanced supersonic
V/STOL aircraft are very compact in nature. This results pri-
marily from the desion goal to minimize control forces and
forward lift enaine size by concentrating the major components of
the aircraft near the center of agravity. Integration of the
propulsion system with the airframe for these confiaurations can
result in potentially significant aerodynamic flowfield interac-
tions. These interactions may arise from geometrically close-
coupled inlet/nozzle arrangements arising from minimum length
nacelles. The problem can be further complicated if the confiqu-
ration includes movable canards and vectorable nozzles located

near the wing.

The data obtained with conventional wind tunnel test tech-
nigues can be questionable in the presence of 1large flowfield
interactions, since these techniques cannot achieve simultaneous
simulation of all of the flowfields involved. Proper simulation
can be achieved with the compact Multi-Mission Aircraft Propul-
sion Simulator (CMAPS), developed by the Air Force Aeropropulsion
Laboratory (AFAPL), Reference 3. The CMAPS, Figure 1-1, is a
miniature, low bypass ratio turbofan engine powered by a high

pressure air turbine.
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GP53-0871-19-R
Figure 1-1. Compact Multimission Aircraft Propulsion Simulator (CMAPS)



mhe mecst beneficial application of the CMAPS will obviously
be cn these aircraft that have potentially large flowfield inter-
actions hetween the inlet, nozzle, and airframe. Since testing a
CMAPS equipped model may be more complex than testing a conven-
tional model (Flow-Through and Jet-Effects), the need to identify
the types of configurations which require CMAPS evaluation is
critical. An aerodynamically close-coupled V/STOL configuration
represents an effective means of evaluating the requirement for
simultaneous inlet and exhaust nozzle flow simulation, and thus

the potential need for the CMAPS testing technique.

Based on the foregoing considerations, a three phase NASA
program was initiated in October, 1980 to measure airframe/pro-
pulsion system interactions of close-coupled supersonic V/STOL
configurations. Both propulsion simulator and conventional model
techniques were used. An equally important objective was to
continue development of installation and test techniques for wind
tunnel models equipped with propulsion simulators. This program
regresented the first time that twin CMAPS had been tested in a
wind tunnel model of a full confiauration aircraft. Previous
proarams have tested only single simulators in simple

body/nacelle models, Reference 4.

The approach to accomplish these objectives was to desian,
fabricate, and test two model conficurations characterized by
close-coupled airframe/propulsion arrangements, each in simulator
and conventional test modes. Key characteristics of the two test
configurations are shown in Figure 1-2. The external airframe
‘components of the basic model were provided by the Air Force.
This basic configuration was developed under prime contract to
the Air Force Wright BAeronautical Laboratories (AFWAL) by MCAIR
in the Advanced Nozzle Concepts (ANC) proaram, Reference 4. The
alternate confiquration is a derivative of the basic configura-
tion with the inlet/nozzle 1length shortened and the canard
removed. At this time, only the basic configuration has been
tested. However, the hardware has been fabricated to model the

alternate configuration.

2




Basic Design Alternate Design

L

Air-to-Air Concept Changes for Alternate
e 2.D ALBEN Vectorable Nozzles (AR 4) ¢ Round Short Inlet With Lower Slot
¢ 2-D Normal Shock Inlet With Droop Lip e Canards Removed
¢ Wide-Spaced Podded Nacelles ¢ |Inner Wing Extension Shortened
¢ Close-Coupled, All Movable Canards
e Advanced Maneuvering Wing GP53-0871-18-R

Figure 1-2. Aerodynamic Characteristics of Study Concepts

Conceptual design of the test model was completed in Phase 1
during the first seven months of the proagram, Reference 5.
Detailed design and model fabrication were accomplished in Phase

2, as reported in Reference 6.

The results of the Phase 3 wind tunnel tests and analysis
are presented in a series of four NASA Contractor Reports (CRs).
The pressure data is reported in Volume I of the Wind Tunnel Data
Report, (Reference 1). The force and moment data and data reduc-
tion procedures are reported in this document, Volume TII. The
detailed data analysis and executive summary are presented in the

Test Analysig‘Report and Final Report, respectively (References 2
and 7).

The followino sections include a description of the test
article, facility, instrumentation and other data reduction
procedures. The force and moment data is presented graphically

in Appendix A of this volume.



2. TEST ARTICLE DESCRIPTION

The test vehicle was a 9.62% scale model of a supersonic
V/STOL aircraft with twin, podded engine nacelles. The nacelles
incorporated normal shock inlets and vectorable Aerodynamically
Load Balanced Exhaust Nozzles (ALBENs), designed by General Elec-
tric. The model installed in the NASA-Ames 11x11-ft transonic
wind tunnel is shown in Figure 2-1. Testing was performed at
speeds from Mach 0.4 to 1.4 and through the ancle-of-attack range

from -2° to 20°.

Normal Shock
Inlets

Podded Engine

Nacelles Model Geometry

Fuselage Length: . .............. ... 1.79m (5.881t)
Nacelle Length: . .................. 0.86 m (2.83 ft)
WingSpan: & csemuvmiss ssmasamenn. 1.30m (4.28 ft)
WIingArea: .....ovimeseussmismes 0.48 m? (5.22 {t?)
Canard Area: ................... 0.09 m2(1.02 {t2)
Inlet Capture Area: . ........... 35.23cm? (5.461in.?)
Nacelle Max Area: ............. 116.14 cm?(18in.?)
Serodynamieally Nozzle Throat Area (Dry): . ... ... 19.42 cm?(3.01in.2)
Nozzle Throat Area (A/B): ...... 33.23cm?(5.15in.2)

Load Balanced
Exhaust
Nozzles (ALBEN)

Close-Coupled,
All Movable

Canards GP53-0871-42-R

Figure 2-1. Supersonic V/ISTOL Wind Tunnel Model Installed in
NASA-Ames Transonic Tunnel

DRIGINAL PAGE I
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The model was tested in three different modes: the conven-
tional Jet-Effects and Flow-Through modes, and the propulsion
simulator (CMAPS) mode. A schematic of the three modes, each in
its characteristic configquration, is shown in Figure 2-2. A
common support system and metric arrangement were maintained for

all three test modes as shown in Figure 2-3.

Simulator Mode

Flow-Through Mode

Jet-Effects Mode

GP53-0871-17-R

Figure 2-2. Test Mode Characteristics
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_ Interchangeable Aft Metric Break
Nonmetric inlet Duct  Nacelle Core Hardware
L—_I Metric (Metnc)—\ (Nonmetric) Nozzle (ALBEN Shown)

Metric (sectioned) W =

Duct Metric Break

P

Strut Metric Break <

Task Balance

\—Support System

GP53-0666-87-R

Figure 2-3. Common Support System and Metric Arrangement

Within the three test modes, a matrix of two inlet and two
exhaust system configurations was tested. The inlet was
confiocoured as either flowing or faired. The exhaust system
incorporated either ALBENs or nozzle extension ducts with chokes
installed. Four aerodynamically different test confiqurations
were derived from the two inlet and two exhaust configurations.
These configurations were termed: 1) Common Baseline, 2) Nozzle
Extension, 3) Nozzle Extension Baseline, and 4) Simulated
Aircraft. The external differences in these configurations were
only in the nacelle geometry, Figure 2-4; all other external
model features were common, including canards, wings, and
vertical tail, Figures 2-5 through 2-7. A matrix of the modes,
inlet/nozzle combinations, and test configurations 1is shown 1in
Figure 2-8. The Common Baseline conficuration was tested in each
mode as a tie-in for the three separate model build-ups and used
to account for any bias errors created between tunnel entries.
The Nozzle Extension configuration used the extension ducts to

displace the exhaust plume from the vicinity of the airframe such

6




that inlet mass flow ration (MFR) effects could be measured
independent of jet-induced effects. The Nozzle Extensicn
Baseline configuration was used to account for the effects of the
extension ducts on the metric airframe as compared to the ALREN
installation. Of the four configurations tested, the Simulated
Aircraft configuration is the best representation of an aircraft
in flight.

Aerodynamic Configurations

o
Conventional Mode Metric -1 .
:—— Nonmetric
1

(— Common Baseline j

— Jet Effects

CNozzle Extension H 1

— Inlet Effects

Nozzle Extension o I
Baseline !

— Nozzle Extension
CMAPS Mode Effects on Airframe

CSimulated Aircraft 4}

Contribution
to Test Data:

— Jet Effects
— Inlet Effects
GP53.0688-91-R — Coupling Effects

Figure 2-4. Comparison of Test Configuration



Model Geometry Airfoil Sections

5=0.0919 m? (0.989 2), Exposed BL 79.5: NACA 64A006
b=0.5249 m (1.722 ft) _ BL 177.54: NACA 64A003.5
Aspect Ratio=3.0
7=0.25 Deflection
Cp=28.000 cm (11.02 in.) 0,=—20to 10 deg
cy=7.00 cm (2.76 in.) d. Is Positive for
MAC =19.60 cm (7.72 in.) Leading Edge Up
Model Scale FS 31| 046 Canard/Nacelie Intersect
—— - T e
| /— BL 6.324
BL 8.379

Canard/Nacelle
Intersect

'S BL 9.668

-

GP53-0871-40-R

Figure 2-5. Canard Geometry Description




Mode! Geometry Airfoil Sections

s=0.4851 m? (5.221 ft2) BL 20.000: NACA 64A004.6
b=1.3031 m (4.275 ft) BL 41.000: NACA 64A004.6
Aspect Ratio=3.5 BL 104.000: NACA 64A005.5
7=0.25 BL 243.350: NACA 64A003.0

Cy="59.564 cm (23.45 in.)
Cy=14.890 cm (5.86 in.)
MAC =41.697 cm (16.42 in.)

ALE=45 deg |
|
/]
e
L7
A0
/
<
|
|
|
|
Trailing Edge ‘
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Figure 2-6. Wing Geometry Description



Model Gesmetry

s =0.0630 m? (0.678 ft2), Exposed
h=25.09 cm (9.88 in.)

Aspect Ratio=3.5

7=1.0

A=0.333

Cg=37.64 cm (14.821in.)
cr=12.55cm (4.94 in.)

MAC =27.18 cm (10.70 in.)
ALE=50 deg

Fuselage/Tail Intersection:NACAB4A005.5
Highest Tail Waterline: NACA64A003.5

12.451 cm
(4.902 in.)

77

0.017

37.390 cm

=

(14.720 in.)

GP53-0871-38-R
Figure 2-7. Vertical Tail Geometry Description
Propulsion System
Test . 4 Test Mode

Configuration Configuration

Inlet Nozzle Jet-Effects Flow-Through CMAPS
Common .
Baseline Faired ALBEN X X X
Nozzle . .
Extension Flowing Extensions X X
Nozzle
Extension Faired Extensions X
Baseline
Simulated )
Aircraft Flowing ALBEN X

GP53-0666-55-R

Figure 2-8. Inlet/Nozzle Combinations Tested in Each Mode
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2.1 TEST MODES -~ Each of the three test modes (CMAPS, Jet-

Effects, and Flow-Through) represented a different wind tunnel
test technique. A major program objective was to eliminate bias
errors due to test technique differences. Therefore, a common
support system and a common metric arrangement were used for all
three test modes (Figure 2-3). The internal flow hardware was
unigque to each test mode but interchangeable between the three
modes, as shown in Figure 2-9. The flow path through the nacelle
could be changed by installing a simulator, a jet-effects plenum,

or a flow-throuch duct, dependino on the test mode desired.

Instrumentation

Ring\\li:: D-D
\Inlet Strut

Tost Modes e
View C-C
‘ 4 4 Jot-Effects
=y o
““““ Housing
viwss FowThrough

| i& Propulsion i
Simulator Crossover
- |

View A-A Air Manifolds

Balance
Tape(

Model Support Sting

GP53-0871-37-R

Figure 2-9. Interchangeable Nacelle Core Hardware

In this section, the common hardware is further described,

as well as the individual test modes.
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2.1.1 Common Model Support System and Metric Arrangement -

The support system and metric arrangement were common bhetween the
three test modes to eliminate test technigue bias errors. The
model support system and core hardware provided the model-to-
facility interface for airflows and instrumentation and the struc-
tural support for both the metric and non-metric components of
the model. The support and core hardware consisted of the stina,
balance housino, air crossover, air manifolds, nozzle support,
front simulator mount, retainer, and transition duct. These
components are shown in Figure 2-10. The optional front simula-
tor mount was designed to remove torsional loads during the CMAPS
mode, but was flexible in the axial direction to allow limited
movement due to thermal growth. The front mount was not used in
‘this program in order to provide more space for instrumentation
lines.\ The nozzle support was used to react to axial loads and

nozzle vectoring loads.

Crossover /— Nozzie support

|
NN
, _7/ T —- Retainer
Balance housing

Front simulator mount Transition duct
(Optional) ﬁ
(Not used in this test)
L | L
L]
Air manifolds—

. . ey

Figure 2-10. Core Support Hardware

GP53.0871-62-R
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The retainer and transition duct served to deliver the air
from the interchangeable nacelle components to the exhaust
system. The retainer was firmly attached to the nacelle compo-
nent and connected to the transition duct with a no-load seal.
This seal 1isolated the interchanceable nacelle components from

the exhaust system loads.

In each test mode, the model was supported by a single sting
which extended from the center of the lower fuselage to the wind
tunnel offset adapter. A schematic of the tunnel installation
and support system is shown in Figqure 2-11. This sting was
selected as a compromise between a rear entry sting design and
lower fuselage mounted "hockey stick" design. °“This selection is

detailed in Reference 3.

\— Tunnel Ceiling !
— a=25°
€ of Rotation
\ —\

a=0° \ | I
Tunnel § _ —-——'——-/EZI _\\ | _ ,:/_’qf—:l'_
] [
!
\r

L —_— —_——t ——

Offset Adapter —/

Window Border UPWT 10° Adapter
| Tunnel! Floor
| /
|

Figure 2-11. Model Installation in NASA-Ames 11 ft x 11 ft Unitary Plan
Wind Tunnel

UPWT Extension
|

GP53-0871-36-R
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Four hicoh pressure air passages, two for the CMAPS drive air
and two for the bleed air, were contained in the sting along with
a passage fcor model instrumentation lines. These passages, shown
in Ficure 2-12, were machined out of the solid 17-4PH stainless
steel sting and sized to accommodate the airflow requirements of
the propulsion simulators. At the offset adapter, these air
lines, and the model instrumentation, connect with air supply

lines and the instrumentation lines from the facility.

Balance Housing Attachment

Drive Line
/Bleed Line
S
S T TTTTTTT T T T T
' e N
%\ e, T T .- T -
L A
A
Bleed-Air Passage N 17-4PH Stainless Steel
Drive-Air Passage
A-A Instrumentation Passage

GP53.0871-8-R

Figure 2-12. Model Support Sting

Photographs taken during model assembly show the support
system and core hardware. The assembled core hardware supporting
the transition duct and "dummy" simulator is shown in Figure
2-13. A sideview of the same assembly with the balance installed
is shown in Figure 2-14. The flow-through duct hardware sup-
ported by the bleed-air manifold is shown in Ficure 2-15. The
assembly of the core hardware onto the stina is shown in Fioure
2-16,
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Figure 2-13. Core Hardware
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Balance Housing

Air Crossover

“‘Dummy”’ Simulator

‘% Inlet Duct Seal \—Bleed Air Manifold

Drive Air Manifold

GP53-0871-59-R

Figure 2-14. Core Hardware With Simulator

.

Balance Taper

Air Crossover v
w B ' : ’ >

-

Flow-Through Duct}

intet Dugt Sea Bleed Air Manifold .

Figure 2-15. Core Hardware With Flow-Through Duct
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Figure 2-16. Core Hardware on Sting
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three test modes. This arrangement consisted of three different
seals: the nozzle metric break seal, the inlet duct seal, and

the strut support seal, Figure 2-17.

The nozzle metric break seal was designed to prevent free
movement of air into or out of the cavity. Therefore, a uniform
cavity pressure was maintained and easily measured. The nozzle
metric seal consisted of a stiff Teflon strip 1.067 cm (0.42 in.)
long and 0.076 cm (0.030 in.) 1inches thick inserted into a slot
in the nacelle shell 0.203 cm (0.080 in.) wide with four small
coil sprinas in the shell applying a small axial force on the
Teflon strip. This seal and spring arrangement allowed movement
of the nozzle relative to the nacelle shell in the axial
direction and in rotation while still keepinag the seal flush

against the nozzle.
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Duct Seal Nozzle Metric Seal

Strut Seal
GP53-0871-20-R
Figure 2-17. Metric Seal Arrangement

The strut seal function was to prevent the external flow
from causing non-uniform pressures in the model cavity. The
strut seal was a thin race track shaped, pliable silicone rubber
strip. This created an airtight, flexible seal around the bottom

of the model between the non-metric strut and the metric model.

The inlet duct seal provided a leak-proof airflow transition
between the metric inlet duct and the non-metric instrumentation
rinc. The instrumentation rina was the common component attached
to the front of either the simulator, flow throuah duct, or jet-
effects plenum hardware. The seal was a pliable, butyl rubber,
flanged tube which allowed normal and axial direction movement

while exerting predictable tares on the model.

2.1.2 CMAPS Mode =~ Propulsion simulators were installed in

the engine nacelles for all the CMAPS mode testing. The engine
face (Plane 2) total pressure rake and simulator compressor face
can be seen behind the close~coupled inlet in Figure 2-18. The
location of the CMAPS instrumentation planes is defined in Figure
2-19. A schematic of the nacelle hardware for the CMAPS mode is

shown in Figure 2-20.
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!
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l Figure 2-18. Propulsion Simulator Installed in Left Hand Engine Nacelle
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Figure 2-19. CMAPS Instrumentation Planes
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Figure 2-20. CMAPS Mode Nacelle Core Hardware

Independent control of the high pressure air through the
drive and bleed lines in the support sting allowed the simulator
to produce desired combinations of inlet and nozzle flow

conditions independently. A schematic of the simulator flow path
is shown in Figure 2-21.
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CMAPS Airflow Schematic
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Nozzle Flow

i/
Compressor Ai &g
.Comp irflow I /‘\ Mixer Exit Slots
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Figure 2-21. Simulator Internal Flow Paths

The Simulated Aircraft and the Nozzle Extension confiqura-
tions, as well as the Common Baseline configuration, were all
tested in the CMAPS mode. Data was acquired for the Simulated
Aircraft configuration in the form of angle-of-attack (A0A)
sweeps and engine pressure ratio (EPR) sweeps. The Nozzle Exten-
sion configuration data was taken for AOA sweeps at various
canard angles and mass flow ratios (MFRs). Only the largest exit
area chokes were used in the Nozzle Extension configuration for
the CMAPS mode. MFR was controlled solely by the simulators.
The Common Baseline conficuration was tested in each test mode to
isolate tunnel induced effects due to separate tunnel entries. A

complete run matrix for the CMAPS mode is included in Appendix B.
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2.1.3 Jet-Effects Mode - Plenum chambers replaced the simu-

lators in the engine nacelles during the Jet-Effects mode test-
ing. The nacelle hardware for the Jet-Effects mode is shown in
Figure 2-22. The drive and bleed lines in the support sting were
used to provide two independently controlled high pressure air
sources to the plenum. The air was then mixed in the plenum and
exhausted through the ALBEN's. This dual-flow plenum design was
intended to duplicate the internal airflow paths and resultant
pressure and temperature patterns encountered in the CMAPS mode.
Although not required, the inlet duct seal was retained during
the Jet-Effects mode in order to maintain a common seal arrange-

ment between the three test modes.

Only the Common Baseline conficuration was tested in this
mode. Data was acqguired with Jjet-on and jet-off AOA sweeps and
nozzle pressure ratio (NPR) sweeps. A complete run matrix for

the Jet-Effects mode is included in Appendix B.

2.1.4 Flow—-Through Mode - Flow-through ducts were inter-

changed with the plenum chambers or simulators to build-up the
Flow-Through mode. The non-metric duct units, Figure 2-23, were
desiaoned to model the propulsion simulators with respect to the
internal inlet flow, particularly at the simulated engine face.
Therefore, the Plane 2 total pressure rakes, inlet dJduct seals,
and compressor face hubs were identical for Flow-Through and
Simulator modes. Therefore, the Plane 2 total pressure rakes,
inlet duct seals, and compressor face hubs were identical for

Flow-Through and Simulator modes.

The Nozzle Extension configuration and the Nozzle Extension
Baseline, as well as the Common Baseline, were tested in this
mode. Inlet MFR was controlled in the Nozzle Extension confioura-
tion with four nozzle chokes sized as follows: 12.49 cm?, 18.74
cm?2, 26.11 cm?2, and 34.25 cm2. The internal flow path and exit

choke aeometry is shown in Fiocure 2-24. An ejector system was
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Figure 2-22. Jet-Effects Mode Nacelle Core Hardware
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Figure 2-23. Flow-Through Mode Nacelle Core Hardware
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Figure 2-24. Flow-Through Mode With Nozzle Extensions
Internal Flow Path and Exit Chokes
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connected to the extension assemblies for Mach 0.4 and 0.6
testing, since the ram air was not sufficient to provide maximum
airflow. The ejector installation is shown in Figure 2-25. The
data was acquired with AOA sweeps at constant canard anagles and

inlet MFRs as shown in Appendix B.

GP53-08

Figure 2-25. Ejector Apparatus Connected to Nozzle Extensions

2.2 INLET/EXBAUST SYSTEMS - Two inlet and two exhaust systems

were tested on the twin podded engine nacelles.

2.2.1 1Inlet Systems - The inlet was tested in both a flow-

ind and a faired configuration. The flowino inlet was a rectangu-
lar, normal shock design with 15° scarf angle and a rotatinag
lower cowl lip. The flowing inlet system with 0° and 45° cowl
lip rotations 1is shown in Figures 2-26 and 2-27 respectively.
The cowl lip rotation is to reduce flow separation around the 1lip
at high angle-of-attack conditions. However, only a limited
amount of testing was performed on the 45° lip rotation

configuration.
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GP53.0871-26-R

Figure 2-26. Flowing Inlet System With 0° Cow! Lip Rotation

GP53-0666-60-R

Figure 2-27. Flowing Inlet System With 45° Cowl Lip Rotation
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The faired inlet <conficuration was formed by installing
pyramidal fairings to the flowincg inlets with 0° 1lip rotation.
The fairing shapes represented simple forward extensions of the
local cowl moldlines. The model with the faired inlet system is

shown in Figure 2-28.

Inlet Fairings =

GP53-0871-32-R

Figure 2.28. Faired Inlet System on Test Vehicle

A second flowing inlet system was also fabricated for use on
the alternate aircraft configuration (see Figure 1-2). However,
it was never tested due to time constraints. This inlet was a

circular design with a 13° reverse scarf anqle, Figure 2-29.

The detailed desian of these inlet systems 1is presented in
Reference 7.
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Figure 2-29. Untested Inlet for Alternate Configuration

2.2.2 Exhaust Systems - Thec exhaust system was tested with
b zle

oth ALBENs and nozzle extension tubes. The ALBEN and noz

0

xtension systems were both non-metric to the internal aircraft
balance. Both were pressure instrumented to obtain their exter-
nal aerodynamic characteristics. The metric break and common
station for the airframe/ exhaust system interface was at model

station 50.689.

The ALBEN model was designed to simulate various power set-

tings and thrust vectoring angles. The model configured with the

ALBENs is shown in Figure 2-30. Two different power settings

(dry and afterburning) were tested by interchanging the lower

flap components, which chanae the throat and exit areas. Inter-
changeable wupper flap components were used to confiogure the

ALBENs for 0°, 20°, or 30° of thrust vectoring (vector angle

| measured from nominal horizontal reference plane, positive trail-

| ing edge down).
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Figure 2-30. Unvectored A/B ALBEN System on Test Vehicle

Nozzle extension assemblies replaced the ALBENs in order to
isolate the flowina inlet effects from those associated with the
exhaust plume. The extension tubes were sized such that the
exhaust plume and base area effects would not be felt on the
metric surfaces of the model. The nozzle extension installation
is shown in Figure 2-31. Exit chokes were attached to the exten-
sion tubes to control inlet mass flow ratio (MFR). Four inter-
changeable chokes were used in the Flow-Through mode to cover the

operating MFR ranace of the propulsion simulator.

2.3 TEST CONFIGURATIONS - The four test configurations (Fiqure

2-4) were used to identify the presence of flowfield coupling and
measure the net effect. These confiqurations were tested in the
three test modes as summarized in Figure 2-32.
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Figure 2-31. Nozzle Extension System on Test Vehicle

2.3.1 Common BRaseline Configuration - The Common Baseline

configuration is defined with faired inlets and the ALBFEN exhaust
system. This conficuration, with unvectored A/B ALPRENs in the
jet-off condition, was tested in all three test modes to isolate

any bias errors due to the separate tunnel entries.

The unvectored dry power ALBENs and vectored A/B ALBENs were
also tested but only in the Jet-Effects mode. The A/B ALBEN
system was tested at 0°, 20°, and 30° thrust vectoring. The 30°
vectoring case was different from all other Jet-Effects configura-
tions in that the wing flaps were also deflected 30°. This build-
up, tested only at Mach 0.4, simulated the vehicle in a high-1lift

low-speed mode.
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_ Test o o
Configuration Mode Mach MFR NPR (deg) (de; )
Common Baseline F/T 0.4 N/A 1.0 -1 —-18 +5 - —-15
6y=0° 6p=0° 0.6
A/B ALBEN 0.9
1.2 -1 =10 +5- —-10
1.4 -1- 9
J/E 0.4 N/A 10—~ 40 —-1-18 +5— —15
0.6 1.0 - 6.0 -5
0.9 1.0 - 85 -5
1.2 10-110 -1-~ 6 0
1.4 10--140 -1-— 86 0
CMAPS 0.4 N/A 1.0 -1 -16 +5—- -15
0.6 -9
| 0.9 -5
| 1.2 -1 - 6 0
1.4 0
Common Baseline J/E 0.4 N/A 10— 40 —-1-20 -5
8y =20° 6,=0° 0.6 1.0~ 60 —1—22 -5
A/B ALBEN 0.9 10—~ 80 —-1—18 0—- —15
1.2 1.0—-120 —-1- 7 0
Common Baseline J/E 0.4 N/A 1.0 —- 4.0 -1-20 45— -5
0,=30° 6, =0
A/B ALBEN
Common Baseline J/E 0.4 N/A 1i0—- 60 —-1-9 0, -5
0y =0° 0 =0° 0.6 1.0 - 6.0 -5
Dry ALBEN 0.9 1.0 - 6.0 0, -5
| Nozzle Extension F/T 0.4 N/A 1.0 -1 =21 -5
! Baseline 0.6
‘ 0.9 -5, ~15
1.2 -1~-~ 6 0
1.4
Nozzle Extension F/T 0.4 05-1.2 N/A —-1-22 +5—- -15
0.6 0.3 -10.9 0— —-15
0.9 03 -109 0— —15
1.2 0.3-0.9 -1—- 6 0 - —-10
1.4 0.3 -109 0—- —-10
CMAPS 0.4 05—-1.2 N/A -1 -1 +5- -15
0.6 03-109 0- -10
0.9 0.3 -09 0—- —-10
1.2 0.3—-0.9 -1 -7 0-—-10
1.4 0.3-09 0—- -5
Simulated CMAPS 0.4 07—-12 10—~ 3.5 0—17 0—- —15
Aircraft 06 03-09 10— 4.0 0—17 0— —10

0.9 04—-09 1.0- 5.0 0— 18 0—--10
1.2 03—-08 10— 75 0—- 6 0, -5
1.4 03—-08 10—~ 95 0—~ 7 0, -5

GP53-0871-29-R

Figure 2-32. Test Summary
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2.3.2 Nozzle Fxtension Confiquration - The lozzle Extension

configuration is defined as havina the flowing inlet system and
the nozzle extension exhaust system. The inlet was tested with
both the 0° and 45° cowl 1lip rotations. Most of the 45° 1ip

cases were tested with the wina flaps deflected 30° as shown in

Fiocure 2-33.

Wing Flaps

GP53-0871-28-R

Figure 2-33. Nozzle Extension Configuration With Wing Flaps Deflected 30°

This configuration models the flowing inlet effects on the

airframe independent of the exhaust effects.

2 s D3 Nozzle Extension Baseline Configuration - The Nozzle

Extension Baseline configuration is defined as having the faired
inlet system and the nozzle extension exhaust system. In this
configuration, only one canard angle was tested for each Mach
number. The purpose of this build-up was to account for the
nozzle extension effects on the airframe as compared to the ALBEN

installation.
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2.3.4 Simulated Aircraft Configuration - The Simulated

Aircraft conficuration is defined with flowinag inlets and the
ALBEN exhaust system. This confiocouration was tested with only
the flowing inlets at O0° 1lip rotation and the ALBENs in the
afterburning (A/B) position with 0° thrust vectoring. This
configuration closely models an aircraft in flight, with jet
effects, inlet effects, and coupling effects measured simul-

taneously.
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3. FACILITIES, INSTRUMENTATION AND DATA REDUCTION PROCEDURES

The nature of testinag with propulsion simulators requires
unique data acquisition and data reduction techniques. Even the
Jet-Effects and Flow-Through modes were confiqured in slichtly
unconventional metric arrangements to reduce bias errors between
test techniques (see Section 2.1). The facilities, instrumenta-
tion and data reduction used during this program are described in

this section.

3.1 FACILITY - All testing was performed at NASA-Ames Research
Center in the Eleven~by-Eleven-Foot Transonic Wind Tunnel
(Moffett Field, California). This facility is a closed-return,
variable density tunnel. It employs a fixed geometry, ventilated
throat and a single-jack flexible nozzle. Airflow is produced by
a three-stage/axial-flow compressor which is powered by four
wound-rotor, variable-speed induction motors. The closed test
section measures 11.0 feet high, 11.0 feet wide and 22.0 feet
long. Flow speeds up to Mach 1.4 with corresponding Reynolds
numbers of 9.4 million per foot are possible. The 11 ft. tunnel
is one of three wind tunnels in the NASA-Ames Unitary Plan Wind
Tunnel Complex. A schematic of the unitary complex and corres-

ponding operatina characteristics is shown in Figqure 3-1.

3.2 INSTRUMENTATION - The model was instrumented to obtain the

aerodynamic characteristics of the airframe and the nozzles.
These characteristics were based on measurements of model forces
and moments, pressures, temperatures, canard angle, and ancle of
attack. The airflow through the model was also calculated. A
list of the instrumentation which is common to the three test
modes is presented in Figure 3-2. Each propulsion simulator
contained additional instrumentation to monitor its health and

performance.
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Figure 3-1. NASA-Ames Unitary Plan Wind Tunnels
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1) Forces and Moments

Measurands Components Balance
Aircraft Balance Forces and Moments 6 (NF. AF. SF, Task Mark XXXII 2.5 in. Balance
PM, RM. YM)
2) Pressure Instrumentation
Number Range Sensor

Inner Wing Surface Static Pressures 14 +15 psid Internal Scanivaive
Outer Wing Surface Static Pressures 27 +15 psid Internal Scanivalve
Centerline Surface Static Pressures 10 +15 psid Internal Scanivalve
Nacelle Surface Static Pressures 45 +15 psid Internal Scanivaive
Nozzle Boattai! Surface Static Pressures 50 +15 psid Internal Scanivaive
Internal Cavity Pressures 16 +15 psid Internal Scanivalve
Nacelle/Nozzle Seal Pressures » 8 +15 psid Internal Scanivalve
Nozzle Total Pressures 18 +15 psid Internal Scanivalve
Nozzle Static Pressures 8 +15 psid internal Scanivalve
Transition Duct Total Pressures 8 0 - 50 psia

3) Temperature Instrumentation
Balance Housing Temperature 10 60° - 200°F  iron/Constantan Thermocouple
Transition Duct Total Temperature 4 60° - 400°F  iron/Constantan Thermocouple

4) Miscellaneous

Canard Deflection 2 -10°to +20° Potentiometer
Angle-of-Attack 1 ~10° to +40° Internal Angle-of-Attack
Nozzle Mass Flow Rate 4 0to 7 Ib/sec Venturi Flowmeter
Canard Root Bending Moment 1 +1,500 in.-Ib Strain Gage

GP53-0909-3-R
Figure 3-2. Model Instrumentation Common to All Test Modes
Only the instrumentation required for the force and moment
data acquisition is described in this section. The external pres-
sure instrumentation is fully described in Volume I of this

report (Reference 1).

3.2.1 Force and Moment Balance and Thermal Control System -

The external aerodynamic loads were measured with a Task MK XXXII
strain gage balance unit. The six component balance measured all
forces and moments, except those on the ALBEN or nozzle extension
assemblies. The aerodynamic loads are transmitted to the 6.350
cm (2.5 in.) diameter balance through the balance taper and taper
adapter. The balance physical dimensions and orientation are
shown in Ficure 3-3., This non-standard balance installation with
the taper loaded, resulted from the required 1locations of the

drive and bleed air lines inside the model.
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+ Normal Force

+ Pitching Moment

+ Axial Force

FS 40.000 Loads Transmittal
13.335 cm Through Taper

Front of Model -—e—— (5.250 in.)

Y

| 22.860 cm 1.905 cm
[ (9.000 in.) (0.750 in.)
Balance C.G. Aft Normal
Force Gage

GP53-0871-53-R

Figure 3-3. Model Balance

Since the force balance was subjected to a wide range of
temperature environments in the three test modes, a balance ther-
mal contrcl system was provided to maintain the balance at a
constant and uniform selected temperature. This was to prevent
bias errors in the force balance output due to thermal gradients

and levels. ,

The balance housing was divided into four heating zones,
each with a heater blanket, controller and thermocouple feedback
loop. The balance thermal control system configuration is shown
in Figure 3-4. The thermal control system was designed to limit
temperature gradients to about 1.5°C at an operatinc temperature
of 71°C (160°F). The heater power density for steady state

operation at selected tunnel conditions is given in Figure 3-5,
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: Heater Power Density Power
Test Condition Number (wattsicm?)  (watts)

System Start-Up 1 0.178 35.35

* Tiunne = 26.67°C 2 0.197 36.61

¢ 1 hr Required to Reach 3 0.716 37.34

Steady State 4 1.184 37.34

Flow-Through Mode(" 1 0.037 7.45

* Mynnat =14 2 0.059 13.86

3 0.454 34.05

4 0.581 19.22

Simulator Mode(" 1 0.031 6.09

* Mynne =14 2 0.019 4.54

* Tyrive =93.33°C 3 0.426 31.92

* Tpieed = 73.89°C 4 0.532 17.56

Simulator Mode!" 1 0.033 6.55

Munne = 14 2 0.036 8.24

® Tyrive =93.33°C 3 0.414 31.08

® Tpieeq=10°C 4 0.544 17.97
Notes:

(1) Steady state operation
{2) The area of each heater is as follows
Heater no. Area

1 198.09 cm? (30.7 in2)
2 234.85 cm? (36.4 in.2)
3 74.86 cm? (116 in.9)
4 3291 cm? (5.1 in2)

GP53-0871-22-R

Figure 3-5. Heater Blanket Power Density

3.2.2 Model Pressure Instrumentation - A total of 226

pressures were measured on the model, includinc external static
press.sures, internal total pressures, seal and cavity pressures,
and Scanivalve reference and calibrate pressures. The overall
external surface tap layout 1is presented in Figure 3-6 and

further detailed in Volume I of this report, Reference (5).
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Figure 3-6. Location of Model External Pressure Instrumentation
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Six Scanivalve modules were used to measure the model pres-
sures. A four module, S~type Scanivalve was located in the
forward fuselage and a two module, S-type Scanivalve was located
in the aft fuselage as shown in Figure 3-7. Each Scanivalve was
a synchronous, 48-port unit using a 15 psid transducer. The Scan-

ivalves and transducers were provided by NASA-Ames.

Front Fuselage Balance Housing .
Cavity Area and Balance Rear Fuselage
Cavity Area

pot
S s
e

o] =220 1084

2 Module
Scanivalve

Dangleometer

4 Module .
Scanivalve GP530871-21-R

Figure 3-7. Fuselage Interior

Those pressure measurements requiring a larger transducer
range than available at the Scanivalves were routed through the
sti.ng to a NASA supplied transducer housed in a temperature con-
trolled pod.

3.2.2.1 ALBEN Surface Static Pressures - The non-metric

ALBEN was instrumented with 49 surface taps. The tap layout
"across the ALBEN is shown in Figure 3-8. This larce number of
taps was used to perform a pressure-area integration from which

l1ift, drac, and pitching moment on the nozzles were calculated.

3.2.2.2 Seal and Cavity Pressures - Eicht static pressure

orifices were distributed around the outside of the aft metric
hreak seal on the left hand nacelle. The location of these ori-
fices is shown in Figure 3-9. A pressure-area integration was
performed with these measurements to calculate the axial force
and pitching moment tares acting on this metric base area. The

aircraft balance outputs were corrected for these tares.
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533 1 @506

WL 10.640

GPS53-0871-13-R

Figure 3-8. ALBEN External Pressure Instrumentation

Sixteen pressure tubes were routed throuchout the model to
monitor cavity pressure. The location of these tubes is shown in
Figure 3-10. These measurements were used to compute pressure-
differential tares across the cavity seals, and were applied to

the balance output as a correction term.

3.2.2.3 Model Total Pressure Instrumentation - Model total

pressure instrumentation was used to measure airflow and to deter-

mine the engine pressure ratio and nozzle pressure ratio.
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Figure 3-9. Location of Aft Metric Break Seal Pressure Instrumentation
FS 50.689
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e

9 - 16 Metric break cavity
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Figure 3-10. Location of Cavity Pressure Instrumentation




Thirty-five (35) total pressure probes were located at the
engine face, Plane 2. There were ten active probes on the left
hand engine face rake and twenty-five (25) probes on the right
hand engine face rake. A full description of the engine face

pressure instrumentation is included in Volume I of this report.

The transition ducts each had four total pressure probes
used in the calculation of nozzle pressure ratio and airflow.

' The total pressure probe locations are shown in Figure 3-11.

Each nozzle extension used during the Flow Through mode,
also had a 9 probe total pressure rake. This rake was located at
FS 68,000 as shown in Figure 3-11, )

Dummy Engine Hub

Transition Duct Bellows

FS FS FS Fs Reference Nozzle Extension
04,382 32.200 36.152
_d AN K 74
‘?—"q\-\-g-u_\m XLy
FS FS FS Exit |
28.142 41.106 \ 46.376 Choke

Intermediate Flow-Through Duct
Engine Simulator

Iniet Duct Seal

Instrumentation Ring Total BL 6.324
Temperature
0° Probe
288° 72°
Bin 96° WL 10.640
216° 144°
FS 36.152
Compressor Face FS 50.689 FS 68.000
Aft Looking Forward Forward Looking Aft Aft Looking Forward

GP53-0871-51-R
Figure 3-11. Location of Model Total Pressure Instrumentation
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3.2.2.4 Internal) Nozzle Static Pressures - Each of the

chokes and ALREN models was instrumented with static pressure
taps. The choke nozzles had four throat static pressure taps
utilized in determining nozzle airflow. The pressure tap
locations are shown in Figure 3-12. The ALBEN had three static
pressure taps located on the expansion ramp as shown in Figure
3-6.

3.2.3 Model Temperature Instrumentation - Model temperature

instrumentation was used for control of balance housing tempera-

ture and to measure nozzle duct total temperature.

The model balance housing was instrumented with eight
iron/constantan thermocouples. Four of the thermocouples con-
nected directly to the heater blanket controllers. The remaining
four thermocouples measured the balance housing temperature at
each heating zone for recording in the data system. Two addi-
tional thermocouples were attached directly to the balance, one
at the taper base and one at the electrical connector housinga.
The location of thermocouples on the balance housinc is shown in

Fiocure 3-4.
The transition duct assembly had two iron/constantan thermo-
couples in each nacelle used in the calculation of duct airflow.

The location of these thermocouples is shown in Figure 3-11.

3.2.4 Miscellaneous Instrumentation - Instrumentation was

installed on the model to measure angle-of-attack, canard deflec-
tion angle and canard root bkending moment. The instrumentation

for these measurements is listed in Figure 3-2.
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Note:

® S, static pressure tap,
typ 4 places, 90° increments

L
1 T —_—
! e
HR". I
I
- - -— “A” dia
(]
e — Loy
]
l(R"
Flow-through choke data table
Configuration Drawing “A” A2 Athroat “R” “s”
1,5 254-4452-5, -6 6.604 cm 3.302 cm 34.252 cm2 12.637 cm 1.651 cm
{(2.600 in.) (1.300 in.) (5.309 in.2) (4.975in.) (0.650 in.)
2,6 254-4452-7, -8 5.766 cm 2.883 cm 26.110 cm?2 8.273cm 1440 cm
(2.270 in.) (1.135in.) (4.047 in.2) (8.257 in.) (0.567 in.)
3,7 254-44529,-10 | 4.887 cm 2.443 cm 18.755 cm?2 6.711 cm 1.234 cm
(1.924 in.) (0.962 in.) (2.907 in.2) (2.642 in.) (0.486 in.)
4,8 254-4452-11,-12| 3.988 cm 1.994 cm 12.490 cm2 6.005 cm 0.996 cm
(1.570 in.) (0.785in.) (1.936 in.2) (2.364 in.) (0.392 in.)
GP53-0871-50-R

Figure 3-12. Location of Flow-Through Choke
Throat Static Pressure Instrumentation
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Two Separate angle-of-attack measurements were made. A
danaleometer mounted in the model forebody, Fiqure 3-7, provided
one measurement of angle-of-attack. An angle-of-attack measure-
ment was also provided which was external to the model on the
support sting. The angle-of-attack based on the support sting
anqgle required a calibration to account for elastic and thermal

bPendina in the stinc.

A potentiometer was installed in each canard drive assembly
to measure the canard deflection of each of the two independently
controlled <canards. The potentiometers measured the canard

deflection angles directly at the canard support shaft.

A strain gauge was installed in the upper surface of the

left hand canard to measure the bending moment at the root.

3.2.5 Facility/CMAPS Instrumentation - Significant instru-

mentation was provided by the facility for measurement of airflow
rates to and from the model, angle-of-attack, CMAPS health, and

basic tunnel operating parameters.

In the CMAPS mode, high pressure air was delivered to the
model throuah the drive-air passage in the. sting and removed from
the model through the bleed-air passage. The mass flow throuah
each of these passages was measured with a critical flow venturi.
The drive and bleed valves, operated from the simulator control
console, were used to regulate the airflow.

,

In the Jet-Effects mode, high pressure air was delivered to
the model through bhoth the drive and the bleed passages. The
drive passage airflow was also measured with a venturi. The
bleed passage airflow was measured with a choked orifice flow-

meter.
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An apparatus

used to measure

measurements

angle-of-attack.

were in

the

turn

inclination

Each propulsion simulator was

sure,

simulator

health monitoring and operating control.

instrumentation and functional use is given in Figure 3-13.

temperature,

instrumentation

rotor thrust,

was

vibration,

required

called the Knuckle-Sleeve
of the

used to calculate

support

for

and rotor speed.

sting.
the

assembly which was

These

model

instrumented to measure pres-

The

a combination of

A summary of simulator

Symbol Definition Quantity Connects To Function
TBF-1 Fwd Brng Temp 1 Controller Health/ Diagnostic
TBF-2 Fwd Brng Temp 1 Backup Health/ Diagnostic
N1 Rotor Speed 1 Controller Health/ Diagnostic
N2 Rotor Speed 1 Backup Health/ Diagnostic
TBA1,2 Aft Brng Temp 2 Controller/Backup  Health/Diagnostic
RT Rotor Thrust 1 Controller Health/ Diagnostic
PS-57 Mixer Press 1 Controller Health/ Diagnostic/

Airflow Correlation
PSK15 Comp Disch Dyn Press 1 Controller Health/ Diagnostic
TT-4 Turbine Iniet Temp 1 Controller Health/ Diagnostic
PS, PT-15  Comp Disch Press 2 Controller W, (Corrected)
TT-15 Comp Disch Temp 1 Controlier W, (Corrected)
PT-4 Turbine Inlet Press 1 Controlier Heaith/ Diagnostic
V1B Vibration 1 Controlier Heaith/ Diagnostic

GP53-0871-25-R

Figure 3-13. Simulator Instrumentation Summary
Per Simulator

Standard facility pressure and temperature instrumentation

was provided to calculate tunnel operating conditions. These

conditions included the tunnel static and total pressure, dynamic

pressure, Mach number, Reynolds number, and total temperature.
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3.3 CALIBRATIONS - Complete calibrations of the installed force

balance, inlet mass flow measurement, and CMAPS systems were con-
ducted at NASA-Ames and MCAIP, These calibrations are breifly
discussed in this section. A dJdetailed description of all of the
model calibrations is vpresented in the Phase II-Final Report,
Reference 7. The CMAPS calibrations are described in References
© and 10.

3.3.1 Force Balance Calibrations - The force balance . was
calibrated both isolated and installed in the wodel. The

installed calibration results were compared with those of the
isolated calibration to ensure that fouling or improper metric
bridging did not occur. Pressurized loadings were alsc performed
during the installed calibration to obtain the balance correction

due to the inlet duct seal.

The isolated balance calibration was used to determine
sensitivities and interactions of the six component balance to
applied forces and moments. This calibration was performed by
statically loading the aircraft balance at ambient pressure and
temperature and at operating temperature (71°cC) over the
specified rances shown in Figure 3-14. The non-standard model
installation was simulated during this calibration at NASA-2Ames
by holding the sleeve of the balance in a non-metric support

structure and applying loads to the taper end.

Gage Range of
Loaded Loadings Increment
Axial ~ —-113.4 - 1134 kgf  22.7 kgf
(—250 - 250 Ib) (50 Ib)
Normal, -1,361 - 1,361 kgf  272.2 kgf

N1and N2 (-1,361 - 1,361 Ib) (600 Ib)

GP53-0871-9-R

Figure 3-14. Isolated Balance Loading Schedule
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The balance was then calibrated installed in the model to
account for the effects of instrumentation 1lines and the three
sets of seals (strut seal, inlet duct seal, and nozzle metric
break seal). A loading fixture, shown in Figure 3-15, was
attached to the upper surface of the center fuselage to which nor-
mal force, pitching moment, and axial force components were
applied. Note that the model was rolled to an inverted position
for the application of these 1loadings. Throughout the calibra-
tions, the balance was maintained at 71°C (160°F) (the same tem-

perature maintained during the test).

FS
40.00
. ' FS FS
4450 35.50
FS 0.00
71.25 Balance
| Aft normal force gage C'F" Forward normal force gage I
— P r== - t— & } - - WL 1244 ——
7Y | N E——T T e |
] ’ |
_. |
Model inverted for
load application +Fp
GP53-0871-49-R

Figure 3-15. Installed Balance Loading Fixture

The installed calibrations were performed with and without a
pressure differential applied across the inlet duct seal. The
hardware to pressurize the inlet duct seal is shown in~ Figure
3-16. Small, but repeatable effects of the installation and
inlet duct seal pressurization were identified by comparina the
isolated and installed calibration results. An example of the
intercept change and slope chanae which were identified in this

comparison is shown in Fiqure 3-17.
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Figure 3-16. Pressurized Inlet Duct Seal Calibration Setup

The change in intercept was caused by a deformation of the
inlet duct seal when subjected to a pressure differential. The
deformed seal exerted a force on the metric portion of the model.
This force was removed from the calculated balance outputs as a
tare. The contributions of  this tare to axial force and pitching
moment were termed FSEALA and MSEALA, respectively. The
variations of these terms with the pressure differential across
the duct seal (DPDS) are shown in Ficures 3-18 and 3-19 for both
simulator and conventional modes. The contribution to normal

force was zero.

52




Nomenclature:
AF = Force in Axial Direction
DPDS = Pressure Differential Across Inlet Duct Seal
AFASLT = Balance Correction in Axial Direction
FSEALA = Balance Correction in Axial Direction

Slope Change Due to
Installation Effect
at DPDS#0

Slope of Perfect

Agreement
AF Indicated

Intercept Change Due to
Seal Deformation

at DPDS #0 Slope Change Due to

Installation Effect
at DPDS =0

AFapplied

"\
Line of Perfect Agreement:

AFindicated = AFapplied

Note: Similar corrections were calculated for normal force and pitching moment GP53-0871-7-R

Figure 3-17. installation and Inlet Duct Seal Pressurization Corrections
to Aircraft Balance In Axial Direction

The change in slope was due to the non-ideal effects of the
metric seals and installation. The metric break seals and instru-
mentatién lines which bridged the metric breaks exerted small but
predictable forces on the metric portion of the model which
varied with the applied load and the 1inlet duct seal pressure
differential (DPDS). Correction terms were applied to the calcu-
lated balance outputs to account for these effects. These correc-
tion terms were labeled AFNSLT,.AFASLT, and APMSLT for the contri-
butions to normal force, axial force, and pitching moment. They
are defined in Figure 3-20.
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Figure 3-18. Duct Seal Pressure Effect on Balance
Simulator Mode
Conventional Mode
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Figure 3-19. Duct Seal Pressure Effect on Balance

Conventional Mode




Normal Force: AFNSLT = KST28+NF + KST29+PM + KST30+AF
Axial Force: AFASLT = KST31+NF + KST32+PM + KST33+AF
Pitching Moment: APMSLT = KST34+NF + KST35+PM + KST36+AF

]

Correction Terms Balance Outputs:
Applied to Balance NF = Normal Force (N)
Outputs PM = Pitching Moment (N-m)

AF = Axial Force (N)

Where Values for KST Are Tabulated Below:
CMAPS Mode: Nozzle Extension Configuration (Runs 1 - 86)

DPDS (KPa) = Pyyct — Peay

-27.58 0 13.7¢ 27.58
KST28 (N/N) ~0.00289 - 0.00063 0.00480 0.00581
KST29 (N/N-m) 0.03615 0.02995 0.04517 0.05311
KST30 (N/N) 0 0 0 0
KST31 (N/N) 0.01097 0.00464 0.00641 0.01010
KST32 (N/N-m) —-0.03556 -0.04369 -—-0.04248 - 0.03963
KST33 (N/N) 0.00741 0.00591 0.00882 0.01731
KST34 (N-m/N) -0.00932 -0.00315 0.00367 —0.00003
KST35 (N-m/N-m) 0.0589 0.00626 0.00820 0.00857
KST36 (N-m/N) 0 0 0 0
CMAPS Mode:
Simulated Aircraft and Common Baseline Configurations (Runs 87 - 293)
DPDS (KPa)
-27.58 0 13.79 27.58
KST28 (N/N) -0.00324 -0.00098 0.00445 0.00546
KST29 (N/N-m) 0.02471 0.01850 0.03373 0.04165
KST30 (N/N) 0 0 0 0
KST31 (N/N) 0.00885 0.00252 0.00428 0.00798
KST32 (N/N-m) —-0.03732 -0.04544 —0.04423 -0.04137
KST33 (N/N) 0.01143 0.00993 0.01284 0.02133
KST34 (N-m/N) -0.00661 - 0.00044 0.00638 0.00241
KST35 (N-m/N-m) 0.0361 0.00399 0.00593 0.00629
KST36 (N-m/N) 0 0 0 0

Figure 3-20. Definition of Balance Output Correction Terms
Due to Installation Effects
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Flow-Through Mode:
Common Baseline Configuration (Runs 66 - 95)

DPDS (KPa)
-27.58 0 13.79 27.58

KST28 (N/N) 001810 002412 002515  0.02899
KST29 (N/N-m) 003976 004773  0.05550  0.06137
KST30 (N/N) 0 0 0 0

KST31 (N/N) 000387 000016 —-0.00029  0.00430
KST32 (N/N-m)  -003392 -0.03972 -0.04130  0.04523
KST33 (N/N) 001311 001352 001848  0.02078
KST34 (N-m/N)  -003864 -0.02260 —0.00991 - 0.00453
KST35 (N-m/N-m) 00690 000673 001079  0.01191
KST36 (N-m/N) 0 0 0 0

Flow-Through Mode:
Nozzle Extension and Nozzle Extension Baseline Configurations
(Runs 96 - 236)

DPDS (KPa)
-27.58 0 13.79 27.58

KST28 (N/N) 0.01091 0.01693 0.01796 0.02180
KST29 (N/N-m) 0.03585 0.04382 0.05160 0.05747
KST30 (N/N) 0 0 0 0

KST31 (N/N) 0.00813 -—0.00436 —0.00584 0.00922
KST32 (N/N-m) -0.00907 -0.01084 -0.01132 -0.01252
KST33 (N/N) 0.00824 0.00865 0.01361 0.01591
KST34 (N-m/N) -0.03654 - 0.02050 0.00781 -0.00243
KST35 (N-m/N-m) 0.0563 0.00546 0.00952 0.01064
KST36 (N-m/N) 0 0 0 0

Jet-Effects Mode:
Common Baseline Configuration (Runs 237 - 321)

DPDS (KPa)
-27.58 0 13.79 27.58

KST28 (N/N) —0.00306 0.00296 0.00399 0.00783
KST29 (N/N-m) 0.04169 0.04966 0.05744 0.06331
KST30 (N/N) 0 0 0 0

KST31 (N/N) -0.00117 -~0.00498 -0.00543 —0.00084
KST32 (N/N-m) -0.02457 -0.03037 -0.03195 -0.03589
KST33 (N/N) 0.01179 0.01220 0.01716 0.01946
KST34 (N-m/N) ~0.00443 0.01161 0.02431 0.02969
KST35 (N-m/N-m) 0.0974 0.00957 0.01363 0.01475
KST36 (N-m/N) 0 0 0 0

GP53-0871-12-R

Figlili';rs-ZO. (Continued) Definition of Balance Output Correction Terms

Due to Installation Effects
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3.3.2 Airflow Calibrations - The airflow through the model

was used to correct the balance outputs for axial stream thrust
at Plane 2, as well as to determine inlet MFR and ram drag. The
airflow calculations were based on a series of calibrations con-
ducted by NASA-Ames and MCAIR. NASA-Ames was responsible for
calibration of the CMAPS and standard facility instrumentation.

MCAIR calibrated the ALBEN and nozzle extension exit chokes.

The CMAPS calibrations were conducted by NASA-Ames in their
nine-by-seven-foot supersonic wind tunnel. A photo of both simu-
lators mounted on the support sting during the static freestream
airflow calibrations is shown in Figure 3-21. A bellmouth in.let,
shown on the right hand CMAPS in Figure 3-21, was used to calcu-
late the reference airflow. The bellmouth inlet was calibrated
at the Colorado Engineerinc Experiment Station, Inc. (CEESI), as
described in Reference 10. Details of the CMAPS calibration are

discussed in References 9 and 10.

GP53-0666-65-R

Figure 3-21. CMAPS Compressor Airflow Calibration Set-Up
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The ALBEN and nozzle extension exit chokes were both cali-
brated at the MCAIR Propulsion Subsystem Test Facility (PSTF)
located in St. Louis, Missouri. The PSTF houses the Mass Flow

Calibration System (MFCS) used in the calibration, Figure 3-22.

® 24 individual orifices each controlled by individual on/off valves
® Orifices range from 0.0156 in. dia to 2.000 in. dia

® Valve controlled manually or by computer

Venturi cal.

e data real gas
Flow . = thermodynamic data

Teletype
Signals to
— Dri t
regulraattzflow Drivers Computer Pressure reading

E— /—

0000

Temperature
E reading\
Remotely

operated
shutoff valve

19 in. (1.D.) settling chamber
Perforated conical operating pressure =600 psig

spreader ]
Burst disk

Perforated

...+ )— Isolation or plate >
Burst Q flow through plate —
disc -
600 psi BT 1%
P Airflow—— i1l - (ch:
1§ \ -
- \_ :
Perforated Plate Calibrated

venturi

Normal screens

S Y S —

GP53-0871-47-R

Figure 3-22. MCAIR Mass Flow Calibration Facility (MFCF)

The instrumentation for the ALBEN calibration included four
total pressure probes in the transition duct, one total tempera-
ture and total pressure in the upstream plenum, and three static
pressures on the variable external expansion ramp (VEER) of the
ALBEN.
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The instrumentation for the exit chokes included the four
total pressure readings in the transition duct, nine total pres-
sure readings in the nozzle extension tube and four static pres-
sures from the choke throat. The instrumentation for both the
ALREM and chokes is shown in Figqures 3-23 and 3-24.

Transition Duct Nozzle Extension Tube

Top
Top

Thermocouple
Port

PTLNA
PTNCL

Forward Looking Aft Aft Looking Forward
GP53-0871-45-R

Figure 3-23. Instrumentation Used With Choke/ALBEN Calibration

Correlation of the airflow dJdata for both ALBEN and chokes
was in the form of a mass flow parameter (WTAP, Figure 3-24)
versus pressure ratio. The pressure ratio for the chokes was the
total pressure measured in the extension tubes divided by the
static throat pressure measured in the chokes. The ALBEN correla-
tion was based on the ratio of the transition duct total pressure
and the static pressure measured by the first pressure tap on the
ALBEN VEER. All airflow calibration data are presented in detail

in Reference 7.
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Mass flow
facility (MFCF)

plenum
Adapter to :
MFCpF plenum /‘NOZZle extension tube /_Choke(s)
fr- 7 e
/ 1
1 £
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Transition duct

ALBEN

PTLNA — Transition duct average total pressure

PTNCL — Nozzle extension tube average total pressure

PTP — Plenum total pressure

PSNCL — Choke average static pressure PVEER1

PVEER1 — VEER static pressure PVEER2 » PVEERA
PVEER2 — VEER static pressure PVEER3

PVEER3 — VEER static pressure

PVEERA — Average VEER static pressure

TTJL — Plenym total temperature

WTAP  — m*VTTIL/(PTP*ATy)
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Figure 3-24. Calibration Installation and Instrumentation

During the wind tunnel tests, mass flow to and from the
model was measured with facility provided venturi and orifice
flowmeters (see Section 3.2.5). NASA-Ames was responsible for

the standard laboratory calibration of these flowmeters.

3.4 DATA REDUCTION PROCEDURES - The data reduction effort concen-

trated on the calculation of aerodynamic and propulsion system
performance parameters. The unique elements of the data reduc-
tion are described herein. Further discussion is presented in
Reference 7. A list of the data reduc,:tion equations is included

herein as Appendix C.

3.4.1 Inlet Airflow Calculation - During the Flow-Through

mode testing, inlet airflow was based on measurements made in the
exhaust nozzle duct (Plane 8). An indirect method of airflow
calculation based on turbine discharge (Plane 57) pressure was
used in the CMAPS mode.
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The Plane € method was based on total temperature and total

and the

static pressure measurements at exit chokes. These

measurements were used in the one-dimensional,

isentropic, com-
pressible flow equations to directly calculate an
at Plane 8.

tions,

ideal airflow
Flow coefficients, obtained during pre-test calibra-

were then applied to these

ideal calculations to obtain

the actual inlet airflow.

The Plane 57 method used in the CMAPS test mode is an indir-
ect calculation based on a correlation of rotor speed and static

pressure in the turbine discharge flow.

In other words, a modi-

fied form of the engine operating map was used to determine

The

measurement is located in the mixer as shown in Figure 2-11. An

corrected inlet airflow.

instrumentation for this pressure

example of corrected inlet airflow variation with rotor speed and

corrected turbine discharoe static pressure (PS57) is shown in
Figure 3-25. Plots of this type formed the basis for the empiri-
cal correlation. This method was developed by S. C. Smith of
NASA~Ames (Reference 9).
1.7 o
. — 110%
(0.77) —0 oy O— 0
1.6 o) O
(0.73) O
15 100% NRP -
0.68 o) —— 1 Percent Corrected
( .1 ) r '\ Rotor Speed
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(0.64) T
Corrected 13 90%
Inlet c e @ O =
airtiow  (0-59) ~O0 80%
1.2
W2rR  (0.54) g
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1.0
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0.8
(0.36)
0.7
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Pse,/ Pty
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Figure 3-25. Typical CMAPS Operating Map In Terms of Turbine Discharge Pressure
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Other methods of CMAPS inlet airflow calculation were also
investicated based on measurements at the enaine face (Plane 2)
and at the compressor discharae (Plane 15). There was also a
form of the Plane 8 method investicated for the CMAPS mode. How-
ever, the Plane 57 airflow calculation was clearly shown to have
the lowest uncertainty. The four methods are discussed further

in Reference 2.

3.4.2 Inlet Stream Thrust and Ram Drag - The airflow cali-

bration results were use to correct the balance output for the
axial stream thrust at Plane 2, as well as the MFR and ram drag.
The value of Plane 2 stream thrust/ram drag was based on the
Plane 8 airflow method in the Flow-Through mode and the Plane 57
method in the CMAPS mode. An example of this calculation is
shown in Figqure 3-26. The variations of stream thrust and ram
draag coefficients with angle-of-attack, MFR, and Mach number are

shown in Figures 3-27 through 3-29.

3.4.3 Force Balance Data Reduction - Standard NASA-Ames

procedures were employed to compute the basic, balance~indicated
forces (normal, side, and axial) and moments (roll, pitch, and

yaw).

Additional procedures were used to correct the axial force,
normal force, and pitching moment outputs of the balance for
seal, cavity, base, stream thrust, and ram drag tares. The

application of these corrections is summarized in Appendix C.

3.4.4 Nozzle Pressure Ratio Calculation - The calculation

of nozzle pressure (NPR) was based on the airflow through the
nozzle for both CMAPS and Jet-Effects modes. Failures in the
ALBEN total pressure instrumentation (PT7) prohibited direct
measurement of NPR. Total airflow to each nozzle was defined as
the sum of net airflow into the model from the support stino and

inlet airflow.
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PT2

P2/PT2 = f(M2)

Inlet Stream
Thrust
FS = A2[P2(yM22 + 1)~ P]

Airflow Calculations 8
(Plane 8 or Plane 57) @
W2C8 W2C57
Inlet Mach Number
Interation Scheme
M2 =f(W2,PT2,TT..)
Inlet Static
Pressure 4

Inlet Ram
Drag
FRAM=W2+V

W2+ 112
MPR= o (Tl ™
A1+ P, MDOT
Nomenclature
W2C8 = Inlet Airflow From A2 = Plane 2 Area
Plane 8 Method A1 = Inlet Capture Area
W2C57 = Inlet Airflow From -
Plane 57 Method Mo = ;;?;’:;Z?memal
P2 = Inlet Static Pressure P, = Freestream Static Pressure
PT2 = Inlet Total Pressure V, = Freestream Velocity
M2 = Inlet Mach Number MDOT = f(M,)

Figure 3-26. Example of Inlet Stream Thrust, Ram Drag, and MFR Calculation

GP53-0871-4-R
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Figure 3-27. Variation of Stream Thrust and Ram Drag Coefficients
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Figure 3-28. Variation of Stream Thrust and Ram Drag Coefficients
CMAPS Mode Mach 0.9
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Figure 3-29. Variation of Stream Thrust and Ram Drag Coefficients
CMAPS Mode Mach 1.4
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For the CMAPS mode, the net airflow through the sting was
the difference between the drive-line and bleed-line airflows,
measured with critical flow venturi flowmeters. The value used
for inlet airflow was based on the Plane 57 method described in
Section 3.4.1.

For the Jet-Effects mode, total nozzle airflow was defined
as the sum of drive-line and bleed-line airflows. (There is, of
course, no inlet flow in the Jet-Effects mode.) The drive-line
airflow was acain measured with a venturi. The bleed-line air-
flow was based on an empirical correlation. Failure of the bleed-
line airflow metering system early in the Jet-Effects mode test
necessitated such a correlation. Airflow measurements made prior
to the instrumentation failure were correlated with corresponding
manifold pressure and total temperature. These correlation equa-
tions were then used to calculate bleed-line airflow. This
predicted airflow was used for all the Jet-Effects runs as the
bleed-line contribution to the total nozzle airflow. The

correlation equations are included in Appendix C.

The pre-test airflow calibrations performed on the ALBEN by
MCAIR and the total temperature measurements in the transition
duct provided the means of calculating NPR from nozzle airflow.

The calibration curves are presented in Reference 7.
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APPENDIX A
WIND TUNNEL TEST RESULTS: FORCE AND MOMENT DATA

The basic force and moment data is presented graphically as
lift, drag, and pitching moment coefficients. These coefficients
are plotted in a manner which reflects the main variable during
each run. Since most of the runs consisted of anale-of-attack
(AOA) sweeps, the general plot format is to present Cp versus Cp,
AOA, and Cy. The data which was acquired durinc nozzle pressure
ratio (NPR) sweeps is presented as Cp,, Cp and Cym versus NPR. The
following plots of 1lift, drag, and pitching moment coefficients
are therefore presented in two categories either angle-of-attack

sweeps or nozzle pressure ratio sweeps.

The lifting characteristics of the canard are also presented
here graphically. The left-hand canard was instrumented with a
single strain «gage near the root, Figure A-1, which was
calibrated to measure a spanwise bending moment. The canard root

bending moment coefficient (C is an indirect indication of

mCRB)
the canard's lifting properties.

A.l ANGLE-OF-ATTACK SWEEPS - The force and moment plots are

grouped to show the effects of various inlet, nozzle and control
surface configurations over an ancle-of-attack range. Fach of
these confiaqurations is presented in a series of three plots.

These three plots are as follows:
(1) cr -vs- Cp
(2) Cp -vs~- ROA
(3) Cp -vs- Cy
The forces on the nozzle extensions were not included in the

total 1ift, drag, and pitching moment coefficients. Therefore,

the plots which include the Nozzle Extension or Nozzle Extension
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Baseline Configurations are based on the airframe 1lift,

drag, and

pitching moment coefficients denoted here as CLA, CDA, and CMA.

Following is an index of the force and moment plots from the

angle-of-attack sweeps.
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Candard Rotation Effects (Continued)
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APPENDIX B
TEST MATRICES

The Phase 3 wind tunnel tests were performed over the range
M= 0.4-1.4. Each run comprised either an Angle of Attack (a)
sweep or a Nozzle Pressure Ratio (NPR) sweep. The run matrix for

each test mode is presented'in this appendix.
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APPENDIX C
DATA REDUCTION PROCEDURE

The overall model commonality between the three test modes
(Jet-Fffects, Flow-Throuagh, and CMAPS) allowed a sinale force and
moment data reduction procedure to be applied to all configura-
tions. The balance outputs were corrected for seal, cavity,
base, stream thrust, and ram drag tares, as summarized in Figure
Cc-1. Typical values of the data reduction terms presented in
Figure C~1 are shown in Figure C-2 for the CMAPS mode. A listing
of the data reduction equations 1is also provided in this

appendix.
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Note: Parameters shown on left nacelle represent

sum of feft and right nacelles. Non-Metric
Nozzles
(ALBEN Shown)
Fy
Fy
i 1 1 F
NSLT A
Fasc ——= | < _,
V, p=—— — — = TF,
R ?-J"-:.———_ e — FAnoz
o ~—_/ \
- IF /
NSC
End of Interchangeable
Metric Duct Nacelle Core Hardware
Unit: CMAPS,

Jet-Effects Plenum,
or Flow-Through Duct
(Non-Metric)
. Tota' Drag= (FA+ FAnoz + Fz + FASLT_ FASC
+ Fasp) COS
+ (FN + FNnoz —Fnsc—Fusir) sin a
+ Fram
s Total Lift= —(F, + FAW+ Fy+ Fagit— Fasc + Fasp) Sin
+(Fy+ FNn;zFNsc —Fysiy) C0s @

Note: With inlets faired: Fy=F,,=0

Where: F,  =Total Airframe Balance Axial Force
Fy  =Total Airframe Balance Normal Force
FAnoz = Pressure-integrated Nozzle Axial Force
FNn = Pressure-Integrated Nozzle Normal Force
0Z
F, =Compressor Face Stream Thrust
Fam =Inlet Ram Drag
Fas 1= Inlet Duct Seal Axial Tare (Slope + Intercept Correction)
Fyscr=Inlet Duct Seal Normal Tare (Slope + Intercept Correction)
Fasc =Model Internal Cavity Axial Tare
Fnsc =Model Internal Cavity Normal Tare
Fasp =Aft Metric Break Seal Axial Tare GP53-0666.95.R

Figure C-1. Total Lift and Drag Data Reduction Summary
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Mach 0.9 Mach 1.4

a=0.22° «=9.20° a=0.43° a=7.08°

Term (1b) (Ib) (Ib) (Ib)

Fa= 2132 -60.82 67.76 46.48
Fn= 14471  1,750.01 21293  1,526.10
FAnoz = 0.15 1.31 5.11 6.64
FNnoz = 3.57 13.20 11.28 24.69
Fp= 57.72 50.37 83.59 83.58
Rram = -4730 -4459  -6258 -6252
RASLT = 3.29 7.03 0.44 9.81
RNSLT = 119 =547 -195 766
Fasc = —442  -497 -1045 1246
Fnsc = 18.31 20.59 43.30 51.63
Fasp= -002  -0.73 1.33 1.27

Axial force =F4 + FAnoz +Fy+ FasLt — Fasc + Fasp
Normal Force = Fiy + Fn ., — Fnsc — FsLr

APS3-0814-58-T

Figure C-2. Typical Data Reduction Terms for Axial and Normal Force
Simulated Aircraft Configuration
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DATA REDUCTION EGUATIONS

The following is a listing of the FORTRAN equations used for all of the
data reduction. Comment cards are included to indicate which equations
are unique to a particular test mode. Some of the flags and logic centrol
statements have been omitted for clarity. Some of the calls to table
loak-ups and calls to subroutines have also bean omitted. This list is
intended to apply to all three test modes unless noted otherwise as
compment cards.

¢ s4% CALCULATE THE FOLLOWING STANDARD PARAMETERS FROM TUNNEL MEASUREMEWTS
C #+% OF PRESSURE AND TEMPERATURE:
O o#4% PF=FREESTREAM STATIC PRESEURE (PSF)
L #%» PT=FREESTREAM TOTAL PRESSURE (PSF)
L o#x% TT=FREESTREAM TOTAL TEMPERATURE (DEG F!
L osxx XMO=FREESTREAM MACH NUMBER
L %% Q=FREESTREAM DYNAMIC FRESSURE (PGF)
£ owt# YO=FREESTREAM VELOCITY (FFS)
c
TTR=TT+459.7
FTO=PT/144
F0=PF/144
XMO=SERT ({ (FT/PF)*%0.2857-1) %3)
G=0, 74PF*XMO**2
00=0/144
YO=XMO® {2803, 074% (TTR/ (140, 2¥XM0%42))) %%0, 5
-
C +%% PRESSURE MEASUREMENTS +#%#
C
r s¥x THE FRESSURES (K=2 TO 47) MEASURED AT THE SCANIVALVES (i=1 70 7}
C #x% IN PSF ARE CONVERTED TO PSI, CODED GOCD OR BAD, AND STORED IR
0 #+% THE ARRAY P(J,K)
c
RO 112 J=1,7
DO 100 K=2,47
P(J,K)=PRESSSV(J,K)*C(J,K) /144
160 CONTINUE
110 CONTINUE
C
¢ #4+ C(J,K)=1 FOR GDOD.PRESSURE
£ 0 FOR BAD PRESSURE
£ #%% CALCULATE PRESSURE COEFFICIENTS #x#
C
00 210 J=1,7
DO 200 J=2,37
CF(J,K)=(FRESS3Y(J, K -PF) /0
20 SOUTINUE
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400

500

600

OO0

¥
¥
e

CONTINUE

##x CALCULATE INLET AVERAGE TOTAL AND STATIC PRESSURES;
$¥+

I=f FOR LEFT HAND SIDE

CSUM=0
PSUM=0
DO 300 K=28,38

J=4

PSUM=PSUM+P (J,K)
CSUM=CSUM+C (J,K)
PT2(1)=PSUM/CSUM

CONTINUE

CSuM=0
PSUM=0
DO 400 K=12,13

I=4

PSUM=PSUM+P (J,K)
CSUM=CSUM+C(J,K)
PS2(1)=PSUM/CSUM

CONTINUE

CSUM=0
PSUM=0
DO 500 K=19,45

J=3

PSUM=PSUM+P (J,K)
CSUM=CSUM+C(J,K)
PT2(2)=PSUM/CSUM

CONTINUE

CSuM=0
PSUM=0
DO 600 K=12,16

J=3

PSUM=PSUM+P (J,K)
CSUM=CSUM+C (J,K)
PS2(2)=PSUM/CSUM

CONTINUE

I=2 FOR RIGHT HAND SIDE

#%% AVERAGE COMPRESSOR INLET STATIC PRESSURE

PIDS=(PS2(1)+PS2(2))/2

x*% NOTE:
21
%%

IF PRESSURES ARE BAD CODED SUCH THAT EITHER PS2(1) OR PS2(2)

IS5 EQUAL TO ZERO,

THEN ELIMINATE THE DIVISION BY TWO IN

PRECEDING EQUATION.
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(o RN I |

CEUM=0

PSUM=0

=1

DD 700 K=45,46

PSUM=PSUM+P (J,K)
700 CSUM=CSUM+C(J,K)

=2

D0 710 K=8,8

PSUM=PSUM+P (J,K)
710 CSUM=CSUM+C (J,K)

3=2

DO 720 K=32,34

PSUM=PSUM+P (J,K)
720 CSUM=CSUM+C (J,K)

=2

DO 730 K=34,38

PSUM=PSUM+P (1K)
730 CSUM=CSUM+C(J,K)

I=4

DO 740 K=16,18

PSUM=PSUM+P (J,K)
740 CSUM=CSUM+C(J,K)

C
PCAV=PSUM/CSUM
C
C #%% CAVITY PRESSURE COEFFICIENT
c
CPCAVA= (PCAV-P0) /00
c
C #+# INLET DUCT SEAL PRESSURE DIFFERENTIAL
c
DPDS=PIDS-PCAV
»
C #%% CALCULATE EXIT CHOKE AVERAGE TOTAL AND STATIC PRESSURES:
C o¥ex I=1 FOR LEFT HAND SIDE
C o##x 1=2 FOR RIGHT HAND SIDE
c
CSUM=0
PSUN=0
DO 80O K=20,21
325

PSUM=PSUM+P (J,K)
800  CSUM=CSUM+C(J,K)
DO 810 K=28,34
1=5
PSUM=PSUM+P (J,K)
810  CSUM=CSUM+C(J,K)
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900

1000

1010

Lo I e I 9w B o |

1100

PTNC(1)=PSUM/CEUN

CSUM=0
PSUM=0

DO 900 K=33,37
=5

PSUM=PSUM+P (J,K)
CSUM=CSUM+C (J,K)

PSNC (1) =PSUM/CSUM

CSUM=0

PSUM=0

DG 1000 K=5,8

I=6

PSUM=PSUM+P (J,K)

CSUM=CSUM+C (J,K)

DO 1010 K=10,11

I=6

PSUM=PSUM+P (J,K)

CSUM=CSUM+C (J,K)
PSUM=PSUM+P (b,13)+P (6,16) +P (6,22)
CSUM=CSUM+C(6,13)+C(6,16)+C(4,22)

PTNC(2)=PSUM/CSUM

PSUM=0

Csum=0
PSUM=P(6,12)+P(6,17)+P(6,20)+P(6,21)
CSUM=C(6,12)+C(6,17)+C(6,20)+C(6,21)

PSNC{2)=PSUM/CSUM

*%* CALCULATE ALBEN AVERAGE TOTAL PRESSURES;
I={ FOR LEFT HAND SIDE
I=2 FOR RIGHT HAND SIDE

PSUM=0

CSuM=90

DO 1100 K=5,8
J=7

PSUM=PSUM+P (J,K)
CSUM=CSUM+C(J,K)

PTNA(1)=PSUM/CSUM

PSUM=0 .
CSUM=0

D0 1110 K=5,8
I=7
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PSUM=PSUM+F {J,K)
1110 CSUM=CSUM+C(J,¥)
c

PTNA(2)=PSUM/CEUN

£
C %%+ ALBEN STATIC PRESSURE FROM VEER MEASUREMENTS
C

PSUM=0

CSuM=0

DO 1200 K=2,4

J=7

PSUM=PSUM+P (J,K)
1110  CSUM=CSUM+C(J,K)

PVEERA=PSUM/CSUM

»%% TEMPERATURE MEASUREMENTS

#%% DRIVE AND BLEED LINE TEMPS. (CMAPS MODE ONLY)

aoOoooonNon

TTRDV=TTDV+459.7
TTRBV=TTRBV+4539.7

NOZILE ALPHA = BALALPHA{1)
MODEL ALPHA = BALALPHA(Z)

L
£ *%% AVERAGE NOZIZILE TEMPERATURES (DEB F)
C
C I=1,L/H SIDE I=1,R/H SIDE
C
T2 =(T711+T712)/2
T7{2)={T721+7722)/2
C
C #x* CONVERSION TO RANKINE
C
TI7(1)=T7(1)+459.7
T17(2)=T7(2)+459.7
£
C #%+ CORRECTION FACTOR TO STANDARD DAY TEMPERATURE
C .
THETA=SQRT(TTR/D18.49)
£
C #%% ANGLE MEASUREMENTS #x+#
C
£ %%% NOTE: THE MODEL NDZZLES ARE NON-METRIC (I.E. NOT ATTACHED TQ THE
C %% AIRCRAFT BALANCE, BUT GROUNDED 7O THE STING). IN ORDER 7O
C %%% RESLOVE NOZILE FORCES FROM PRESSURE INTEGRATION, THE NOZIZLE
C %x% OR STING ANGLE MUST BE COMPUTED, IN ADDITION TO THE MODEL OR
C 24+ BALANCE ANGLE:
C
C
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OO0 0002
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«

[or I v IR 90 B o |

LE X
*x%
4%
*A¥

k¥

* %%

%%

% ¥

%%

*%¥

*¥¥

* %%

*%%

*E%

%%

BALALPHA(1 AMD 2) ARE CALCULATED FROM THE NASA-AMES STANDARD

DATA RSDLUCTION EQUATIONS AND INCLUDE STING AND BALANCE
DEFLECTIANS DUE TO ELASTIC BENDING. A CORRECTION TERM WAS
ADDED T8O EACH DF THESE ANGLES TO ACCOUNT FOR STING THERMAL
BENDIMNG. THIS CORRECTION TERM 1S DENOTED "THRM".
MODEL ANGLE OF ATTACK
ALPHAM=BALALPHA(2) +THRM
NOZILE ANGLE OF ATTACK
ALPHAN=BALALPHA (1) +THRM
NOTE: THRM 1S DEFINED éE?ARATELY FOR EACH TEST MODE
FLOW-THROUGH MODE:
THRM=0.0
JET-EFFECTS MODE:
THRM=0.490140754+4,17191423E-3*(TTDV(1))-7.65960224E-3*(TTBV (1))
CMAPS MODE:

THRM=-4,533611E-243,0071469E~-3#(TTDV(1))-4.5580B3E-3#(TTBV (1))
+3.152264E-2% (WDV (1)) +0,37941#(WBV (1)) +2.63730BE~7#(NC(1))

WHERE: WDV(1)=LEFT HAND SIDE DRIVE LINE AIRFLOW (LB/SEC)
WBY (1)=LEFT HAND SIDE BLEED LINE AIRFLOW (LB/SEC)
NC(1)=LEFT HAND SIDE CORRECTED CMAPS ROTOR SFEED (RPM)

THESE TERMS ARE CALCULATED LATER FOR THE CMAPS MODE

BALANCE CORRECTIONS ##+
MODEL CAVITY CORRECTION’
NAFSC=CPCAVA*QO*ACAVN
AFASC=CPCAVA*Q0*ACAVA
PMASC=NAFSC*XCAV+AFASC*ZICAY
WHERE: ACAVN=44.56% SQ.IN.

ACAVA=10.548 SO.IN, FOR CMAPS AND FLOW-THROUGH MODES
=24,892 SQ.IN. FOR JET-EFFECTE MODE

291



C XCAV =0.29167 FT.
c ICAV =-0.15 FT.
L .
C #%% INLET DUCT SEAL CORRECTION
C
FSEALN=0.0
FSEALA=TABLE LOOK UP FUNCTION OF DPDS
MSEALA=TABLE LOOK UP FUNCTION OF DPDS
c
C #*% SEE FIBURES 3-18 AND 3-19 IN TEXT FOR DEFINITION OF TABLES
C
C #*» INLET DUCT SEAL CORRECTION - A FUNCTION OF PRESSURE AND LOADS
c

AFNSLT=KST28*NF+KST29%PM+KSTI0O*AF
AFASLT=KST31*NF+KSTIZ2#PM+KSTIZ*AF
APMSLT=KST34%NF+KSTIT#PM+KSTIL*AF

C
C ##% WHERE: THE COEFFEICIENTS KST28 THROUGH KST36 ARE TABLE LOOK-UP
C #%% VALUES AS A FUNCTION OF THE BALANCE OQUTPUTS (NF, PM, AF)
C #%% AND THE INLET DUCT SEAL PRESSURE DIFFERENTIAL (DPDS). (SEE
C *%x FIGURE 3-20 IN TEXT)
c
C ##% NOTE: ALL PITCHING MOMENT CORRECTIONS AND INPUTS IN FT-LES.
C
c
C #%x AFT SEAL CORRECTION
C
D0 3000 I=1,3
DO 3000 K=40,44
J=1
3000 CP(I=CP{J,K)
c

DO 3010 I=6,8
DO 3010 K=40,42
=2

7010 CP(I)=CP{J,K)

(& ]

[or BN wp ]

CPSUM=0.0
CPSUM1=0.0
DO 3100 I=1,8
CPSUM=CPSUM+CP (1) *ALALL(])
3100 CPSUM1=CPSUML+CP (1) *#ALAL (1) *#RPMAL{I)

L
AFASP=Q0*CPSUM
PMASP=Q0*CPSUMIL
c
C
C #%* WHERE: ALA1 AND RPMA1 ARE THE AFT FACING AREA AND THE MOMENT ARM
C *x» ASSOCIATED WITH THE PRESSURE TAPS AT THE AFT SEAL

292




[ N o B ] OO OO0

OO0

4000

4010

4020

EX S

ALAL1(1)=0.662 S0.IN. RPMAL1 (1)=-0.15 FT.
{2¥=1.46b {2)=-0.030417
{3)=0.732 {3)=0.019147
(4)=1.466 (4)=-0.030417
(5)=0.894 {S)}=-0.15
(6)=0.368 {6)=-0,269383
(7)=0,368 (7)=-0.319187
{8)=0.368 (8)=-0,269383

##% TOTAL CAVITY CORRECTION #%#

ACAV(2) =AFASC+FSEALA+AFASP+AFASLT
NCAV(2)=NAFSC+FSEALN+AFNSLT
PMCAV(2) =PMASC+MSEALA+APMSLT+PMASP

#*% CONVERT 70O COEFFICIENT FORM

ACAVN=ACAV(2)/(0%5.221 SQ.FT.)
NCAVN=NCAV(2)/(Q#5.221 5Q.FT.)
PMCAVN=PMCAV(2) /(Q#5.221 SB.FT. # 1.36B FT.)

#4% NOTE: THE BALANCE CORRECTIONS DUE TO STREAM THRUST AND RAM DRAG ARE

CALCULATED LATER FOLLOWING THE CALCULATIONS OF AIRFLOW THROUGH
THE MODEL AND THE PRESSURE-AREA INTEGRATIONS OF NOZILE FORCES
WHICH IMMEDIATELY FOLLOW HERE.

¥¥% NOZZLE PRESSURE-AREA INTEERATED FORCES *##*

ASSIBN THE VALUES OF NOZILE PRESSURES FROM THE LARGE CP(J,K) ARRAY
TO A SMALLER ARRAY LABELED CPNOZ(I)

DO 4000 I=1,19
DO 4000 K=4,22
J=5
CPNOZ(13=CP(J,K)

DO 4010 1=20,3t
DO 4010 K=16,37
1=5

CPNBZ (1)=CP(J,K)
DO 4020 1=32,51
DO 4010 K=4,23
I=6

CPNOZ (1)=CP (J,K)

CALCULATE NORMAL FORCE AND AXIAL FORCE ON THE UPPER AND LODWER
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5000

5010

5020

3O

5040
c
C

HALVES OF THE ALEBSN BY PERFORMING A PRESSURE AREA INTEGRATION

NFNU=0.0

D0 5000 I=1,31
NFNU=NFNU+CPNOZ (I)*ALN(I)*Q0
CONTINUE

NFNL=0.0

Dg 5010 I=32,5!
NFNL=NFNL+CPNOZ (1) *ALN(I)*Q0
CONTINUE

AFNU=0.0

D0 5020 I=1,3!
AFNU=AFNU+CPNDZ (1) #ALA(I) %80
CONTINUE

AFNL=0.0

D0 5030 I=32,5!
AFNL=AFNL+CPNOZ(I)*ALA(I) *Q0
CONTINUE

CALCULATE THE PITCHING MOMENT ON THE NOZILE

PMN=0. 0

DO 5040 I=t,31

PMN=PMN+ (CPNOZ(I)*ALN(I) *RPMN (1) *QO+CPNOZ (1) #ALA (D) *RPMA(I))
CONTINUE

#%% NOZIILE FORCE COEFFICIENTS - BODY AXIS *x#

C

)

OO0 n
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CNNU=2%NFNU/@%5.221
CNNL=2#NFNL/8%5.221
CANU=Z2%AFNU/@%5.221
CANL=2#AFNL/Q%5.221

CNN=CNNU+CNNL
CAN=CANU+CANL

CPMN=2%PMN/12#5.221%1,368

¥%% NOTE: MULTIPLICATION BY TWO IN EACH CASE IS TO BENERATE THE FORCE OR

MOMENT FOR TWO NOZZLES (THE PRESSURE INTEGRATION 18 PERFORMED
ONLY ON ONE NOZZILE). THE DIVISION BY TWELVE IN THE PITCHING
MOMENT COEFFICIENT EQUATION IS TOD CONVERT THE NQIZLE PITCHING
MOMENT (PMN) TO THE UNITS OF FT-LB.

#%% NOZILE FORCE COEFFICIENTS - STABILITY AXIS ###




CLN=CNN*COS (ALPHAN) -CAN*#SIN (ALPHAN)
CON=CNN#SIN(ALPHAN) +CAN#COS {ALPHAN)

L
C CALCULATE APPROXIMATION FOR NOZZILE SKIN FRICTION
c
NUM=0,455% (14, 2%XMO*#%2) ¥%-0. 447
DEN(I)=(LOG((RN#10%%4)%X(1)))##2,58
CFN(I1)=NUM/DEN(I)
C
C ##% NOTE: I=1 FOR LOWER SURFACE OF ALBEN
c I=2 FOR UPPER SURFACE OF ALBEN
c
NSF=0# (CFN(2)*AWET (2)~CFN(1) *AWET (1))
c !
C oxxs X(1)=2.614 FT (CHARACTERISTIC LENGTH FOR LDWER SURFACE OF 2
c NOZZILES)
c X(2)=3.297 FT (CHARACTERISTIC LENGTH FOR UPPER SURFACES)
c AWET(1)=4,145 SQ.FT., (LOWER SURFACE WETTED AREA, 2 NOIZLES)
c AWET (2)=5.202 SQ.FT. (UPPER SURFACE WETTED AREA, 2 NOZILES)
c
CDNSF=NSF/Q#5.221
C
C #%% TOTAL NOZILE DRAG INCLUDINGE SKIN FRICTION
c
CDARONF=CDN+CDNSF
c
c
c
C
c
C #+* AIRFLOW CALCULATIONS xx»
C
c
C CALCULATE THE AIRFLOW THROUBH DRIVE AND BLEED LINES FOR CMAFS AND
C JET-EFFECTS MODES. NO FLOW WAS DELIVERED TO THE MODEL FOR THE FLOW-
c THROUGH TEST MODE.
C
C #%% DRIVE LINE - CMAPS AND JET-EFFECTS MODES *##
C
c NOTE: I=1 FOR LEFT HAND SIDE
c I=2 FOR RIGHT HAND SIDE
C
c PDY(1)=STATIC PRESSURE MEASURED IN DRIVE VENTURI
c TTRDV(I)=TOTAL TEMPERATURE MEASURED IN DRIVE VENTURI
g
GAMMA=TABLE LOOK UP AS FUNCTION OF PDV(I)} AND TTRDV(I)
C
c PERFORM FOLLOWING ITERATION TO FIND MACH NUMBER IN VENTURI
£
100 Jd=0
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Mity=0,01
SUF=2/(6AMMA+1)
TOF={GAMHA+L) /2% (BAMMA-1)
TOPi=(Z-GAMMA) /2% (GAMMNA-1)

200 J=J+i
CORE=1+ ((BAMMA-1)/2) #M(J) #%2
NUMER=(( (SUF*CORE) #*TOP)/M(J) ) -ADAS(I)

NOTE: AOAS(I)=A0ASD(1)=A0ASD(2)=7 FOR DRIVE VENTURI
=AQASB (1)=A0ASB(2)=3 FOR BLEED VENTURI
AOAS=AREA RATID OF VENTURI

OO0

DENOM=( (SUF*CORE) #%TOP1) - ((SUF*CORE) #*TOP/M(J) ¥%2)
M(J+1)=M(J)~-NUMER/DENOM
TEST=ABS((M(J+1)-M(J))/M(J+1))
IF TEST.LT.0.001 GOTO 300
60 TO 200

300 MACH=M({J+1)

PTDV(I)=PDV(I)#(1+((GAMMA-1)/2) #*MACH*%2) #* (GAMMA/ (GAMMA-1))

GAMMA2=TABLE LOOK UP AS A FUNCTION OF PTDV(I) AND TTRDV(I)
TEST2=ABS (GAMMA2-GAMMA)
If TEST2.LT7.0.0003 GOTO 400
GAMMA=GAMMA2
GOTO 100
400 MACHV (1) =MACH
C #*% END OF ITERATION
£
C ##% NOTE: THIS ITERATION IS BASED ON THE ISENTROPIC FLOW EQUATION FOR
c "A" OVER "A-STAR" AS A FUNCTION OF LOCAL MACH NUMBER AND
c GAMMA. THE TABLE LOOK-UPS FOR GAMMA ARE BASED ON A STANDARD
£ GAS TABLE.
€
C
c
c

#%# DRIVE VENTURI AIRFLOW

TRDV(I)=TTRDV(I)/(1+0.2%MACHV (1) #%2)

[ B o I ]

{w]

g CORRECTED VENTURI AREA
- ADV(I)=(0.11 SQ.IN.)*(1+9.6E-6*(TRDV(I);518.7))**2
CORRECTED VENTURI DIAMETER
DDV(I)=SBRT (4%ADV(I}/PI)
: INDICATED AIRFLOMW
C

CSTD(I)=TABLE LOOK-UP AS FUNCTION OF PDV(I)} AND TTRDV(I)
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WDI(I)=(CSTD(I)#32.174#PTDV(I)*ADV(I))/EQRT(1716.5+«TTRDVII))
STATIC TEMPERATURE
TSTD(1)=0,B33333%#TTRDV (1)
VISCOSITY
VISCD(I)=(2,27E-B#TSTD(1)*##1,35)/(TSTD(1)+198.6)
REYNOLDS NUMBER
RNDVDT(I)=(4.74BBSE-6*WDI(I))/(DDV(])*VISCD(I)*TTRDV(I)**4).
ACTUAL AIRFLOW
CDDV(I1)=TABLE LOOK-UP BASED ON VENTURI CALIBRATION

WDV (I)=CDDV(I)*WDI(I])
#% BLEED LINE -CMAPS MODE ONLY *«#=*

 PBY(I)=STATIC PRESSURE MEASURED IN BLEED VENTURI
TTRBV(I)=TOTAL TEMPERATURE MEASURED IN BLEED VENTURI

GAMMA=TABLE LOOK UP AS FUNCTION OF PBV(I) AND TTRBV(I)

PERFORM FOLLOWING ITERATION TO FIND MACH NUMBER IN VENTURI.
THIS IS THE SAME ITERATION USED FOR THE DRIVE LINE.

J=0

M(1)=0.01

SUF=2/(GAMMA+1)
TOP=(GAMMA+1) /2% (BAMMA-1)
TOPi=(3-GAMMA) /2% (GAMMA-1)

J=J+|

CORE=1+((GAMMA-1)/2) %M (J) #%2

NUMER={(( (SUF#CORE) **TOP)/M(J) ) -ADAS(I)

NOTE: ADAS(I)=A0ASD(1)=A0ASD(2)=7 FOR DRIVE VENTURI
=A0ASB(1)=A0ASB(2)=3 FOR BLEED VENTURI
ADAS=AREA RATIO OF VENTURI

DENOM=( (SUF*CDRE) **T0OP1) - ((SUF*CORE) **TOP/M(J) %%2)
M(J+1)=M(J)~-NUMER/DENOM
TEST=ARS ((M(J+1)-M(J))/M(J+1))

. IF TEST.LT.0.001 BOTO 200
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60 TO 200
00 MACH=M{J+1)

PTBV(I)=PBV(I)#(1+((GAMMA-1)/2) *MACH*%2) %% (GAMMA/ (GAMMA-1))

GAMMA2=TABLE LOOK UP AS A FUNCTION OF PTBV(I) AND TTRBV(I)
TEST2=ABS(GAMMA2-GAMMA)
IF TEST2.LT.0.0005 GOTO 400
GAMMA=GAMMAZ
6070 100
400 MACHB (1) =MACH

C ##+ END OF ITERATION
C
C *%# NOTE: THIS ITERATION IS BASED ON THE ISENTROPIC FLOW EQUATION FOR
C "A" OVER "A-STAR" AS A FUNCTION OF LOCAL MACH NUMBER AND
C GAMMA. THE TABLE LOOK-UPS FOR GAMMA ARE BASED ON A STANDARD
£ 6AS TABLE.
c
C
C %% BLEED VENTURI AIRFLOW - CMAPS MODE ONLY¥%x
C
TRBV(I)=TTRBV(I)/(1+0,2%MACHB (1) *%2)
c
C CORRECTED VENTURI AREA
C
ABV(I)=(0.11 SQ.IN.)*#(1+9,6E-6%(TRBV(I)-518.7)) %x2
£
C CORRECTED VENTURI DIAMETER
C
DBV(I)=5QRT (4*ABV(I)/PI)
C
c INDICATED AIRFLOW
€
CSTR(I)=TABLE LOOK-UP AS FUNCTION OF PBV(I} AND TTRBV(I)
£
WBI(I)=(CSTB(I)#32.174+PTBV(I)*ABV(I))/SART(1716.34TTRBV(1))
C
C STATIC TEMPERATURE
C :
TSTB(1)=0.83333I3I*TTRBV(I)
C
€ VISCOSITY
c
VISCB(I)=(2.27E-B#TSTB(I)##1,5)/(TSTB(I)+198.6)
c
€ REYNDLDS NUMBER
9
RNBV(I)=(4.748B3E+10*WBI (1)) /(DBV(I)*VISCB(I))
c

C ACTUAL BLEED LINE AIRFLOW - INCLUDING SUBCRITICAL CONDITIONS
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100
200

300

400
300
c
c
c

PTBVR(I)=FTBV(I)/PO
BVP(I)=BLEED VALVE POSITION AS INPUT FROM CMAPS CONTROLLER

IF BVP(I),BE.13.5 .AND. PTBV@(I).GE.1.17 6O TO 100

60TO 200
CDBV(1)=TABLE LOOK-UP BASED ON VENTURI CALIBRATION

WBV(I)=CDBV(1)*WBI(I)

60 TO 500

IF BVP(1).BE.13.5 .AND. PTBVA(ID).LT.1.17 B0 TO 300

GO TO 400

PTEXP=PTBVR(I)**(2/7)
WBV(I)=((2.05464%ABV (1) *P0) /SQRT(TTRBV(I)))*PTEXP*SART(1-(1/PTEXP))
60 TO 500

IF BYP(I).LT.13.5 ,OR, PTBVE(I).LT.1.0 WBV(I})=0.0

CONTINUE

C #%% BLEED LINE AIRFLOW FOR JET-EFFECTS MODE ONLY x%=#

c

C

100

200

300

400
500

(o B e BN o B o B 900 N o |

OO0 oOn

IF PTBM(I).LT.100 60 TO 100

60 TO 200

KMIX(I)=0.0035%PTBM(I)+0.73

G0 70 S00

IF PTBM(I),.BE.100 .AND. .LE.400 GO TO 300

60 TO 400
KMIX(1)==-2,357E~6%PTBM(1)##2+0.00165%PTBM(1)+0,9312
60 TO S00 :

IF PTBM(I).BT.400 KMIX(I)=1,26é

CONTINUE

WMIX(I)=(KMIX(I)#0,1395%PTBM(1))/SART(TTRBV(I))

NOTE: THE AREA TERM (0.1395 S@.IN.) WHICH IS USED ABOVE, IS8 THE AREA

IN THE MIXER CORRECTED FOR THE MIXER FLOW COEFFICIENT AND THE
FLOW RATE CONSTANT FOR CHOKED FLOW:
0.1395=CDMIXER*AMIXER*0.3313

WBV(I)=WMIX(I)

%% THE CALCULATIONS FOR COMPRESSOR INLET AIRFLOW BEGIN ON THE NEXT FAGE
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#2% COMPRESSOR INLET AIRFLOW CALCULATIONS *#3
FLOW THROUGH MODE ~ IN THIS MODE, INLET AIRFLOW CALCULATICONS WERE
BASED ON MEASUREMENTS AT THE SIMULATED COMPRESSOR FACE AND AT THE
CHOKE NOZZLES ON THE EXTENSION DUCTS. THESE ARE REFERRED TO AS THE
PLANE 2 AND PLANE B8 METHODS RESPECTIVELY.
PLANE 2 METHOD
PRAT=PS2(1})/PT2(I)
PREX=PRAT**(46/7)
PREX2=(1/PRAT)*%(2/7) _
.W2(1)=((0.91886*7.07*PT2(1))/SQRT(TTR))*PREX*SQRT(S*(PREXZ-I))
AVERAGE INLET AIRFLOW
WAF2=(W2(1)+W2(1})/2
CORRECTED INLET AIRFLOW
SEA-LEVEL STANDARD DAY PRESSURE CORRECTION
DEL(I)=PT2(1}/14.697
W2R(I)=(W2(I)*THETA) /DEL(D}
PLANE 8 METHOD - USED WITH EXIT CHOKES
PRCH(I)=PTNC(I)/PSENC(I)
WTAP (1) =A+B#PRCH(I)+C#PRCH(I) #*2+D*PRCH(]) ¥+3
IF PRCH(I).BT.PRMAXC WTAP(I)=WLINMC
IF PRCH(I).LT.PRMINC WTAP(I)=0
NOTE: THE FOLLDWING CONSTANTS ARE OBTAINED IN A TABLE LOCK-UP.
THESE TABLES WERE GENERATED IN STATIC CALIBRATIONS OF THE
CHOKES. GSEE REFERENCE 7 FOR A LISTING OF THESE TABLES.
A, B, C, D, WLIMC, PRMAXC, PRMINC, ATC=CHOKE AREA
WB(I)=(WTAP(I)*PTNC (I} *ATC) /SQRT(TTR)
CORRECTED INLET AIRFLOMW

WBR(I)=(WB(I)*THETA) /DEL(I)

#%%CMAPS AIRFLOW CALCULATIONS BEGIN NEXT PAGE *#+#
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CMAPS MODE - IN THIS MODE, INLET AIRFLOW CALCULATIONS WERE

BASED ON MEASUREMENTS AT THE SIMULATED COMPRESSOR FACE, THE

CHOKE NDZILES ON THE EXTENSION DUCTS, THE COMPRESSOR DISCHARGE PLANE,
AND THE TURBINE DISCHARGE PLANE. THESE ARE REFERRED TO AS THE

PLANE 2, PLANE 8, PLANE 15, AND PLANE 57 METHODS RESPECTIVELY.

PLANE 2 METHOD - THIS METHOD IS IDENTICAL TO THE FLOW-THROUGH MODE

PRAT=PS2(1)/PT2(I)

PREX=PRAT**(6/7)

PREX2=(1/PRAT) #%(2/7)
W2(1)=((0.91886#7.07#PT2(1))/SART(TTR)) *PREX*SQRT (5% (PREX2-1))

AVERAGE INLET AIRFLOW
WAF2=(W2(1)+W2(2))/2

CORRECTED INLET AIRFLOW
WZR(I)=(W2(I)*THETA) /DEL (1)

PLANE 8 METHOD - INSTRUMENTATION FAILURES PROHIBITED THE USE OF THIS
METHOD THROUGHOUT THE CMAPS MODE. THEREFORE, THE
EQUATIONS ARE NOT LISTED HERE. THE METHOD 15 FULLY
DESCRIBED IN THE TEXT.

PLANE 1S METHOD - BASED ON PRESSURE AND TEMPERATURE MEASUREMENTS MADE
AT THE CMAPS COMPRESSOR DISCHARGE STATION.

PRATIS(I)=PSIS(I)/PTIS(])
PREX1S(I)=PRATIS(I)*%(&/7)
PREX25(I)=SORT(5*((1/PRATIS(I))*%(2/7)-1))
DENOM(I)=S@RT(TTIS(I)+459.7)
WISI(I)=((0.91886%(3.4 S8, IN.)*PT15(1))/DENON(I))
*PREX15(I)*PREX25(I)

WIS(I)=WI1SI(I)*CD15(D)
CD15(1)=TABLE LOOK-UP AS A FUNCTION OF NCP(I) AND BVPOS(I)

NOTE: NCP(1)=PERCENT CORRECTED ROTOR SPEED
BVPOS(I)=BLEED VALVE POSITION

PLANE 57 METHOD - THIS METHOD IS BASED ON A CORRELATION OF THE TURBINE
DISCHARGE PRESSURE AND PERCENT CORRECTED ROTOR SFEED
AS MEASURED DURING THE STATIC AIRFLOW CALIBRATIONS
IN THE NASA-AMES 9X7 FT WIND TUNNEL.

##% NOTE: PLANE 57 METHOD CONTINUED ON NEXT PAGE
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LEFT HAND CHMAFS
PSQDELL=PSS7L/DEL(1)

TE: PSS7L (TURBINE DISCHARGE STATIC PRESSURE) IS5 INPUT FROM THE CMAPS
CONTROLER.

NRPL=(NCPL/78185) %100

DATA (XCOEFL(I),I=1,3)/.3875,-47.575,1601.23/
DATA (YCOEFL(I),I=1,6)/3.9714795E-9,-1.7028217€-6,2.8122647E-4,
i -2.2420302E-2,8.8135679E-1,-12,9537537/

A=-2.2E-7

X1=0.0

D0 20 J=1,3
X1=X1*NRPL+XCOEFL (J)
CONTINUE

Y=0.0

DO 30 N=1,b
Y=Y#NRPL+YCOEFL (N)

CONTINUE

IF (PSGDELL.GT.X1) GO TO 40

W37LC=Y
60 70 45

WS7LC=A% (PSADELL-X1)*%2,+Y
WS7LX=W37LC*DEL (1) /THETA

NOTE: THIS CORRELATION BENERATES THE SEA-LEVEL REFERENCED (I.E.
CORRECTED) AIRFLOW. THEREFOR, THE LAST EQUATION ABOVE IS
USED TO BENERATED THE PHYSICAL AIRFLOW AT THE COMPRESSOR
INLET BASED ON MEASUREMENTS MADE AT PLANE 37,
RIGHT HAND CMAPS
PSRDELR=PS57R/DEL (2)

TE: PSS7R (TURBINE DISCHARBE STATIC PRESSURE) IS INPUT FROM THE CMAPS
CONTROLER.

NRPR=(NCPR/78185) %100

DATA (XCOEFR(I),I=1,4)/.2041667E-1,-4.4142857,321.74405,-7631,3714/
DATA (YCOEFR(I),I1=1,6)/84,3672014E-9,-1.9017B64E~6,3.200773154E-4,
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1 -2, 6095576E-2,1.0478427,-13.956489/
A=-B.1E-7

X1=0.0
DO 20 J=1,4
X1=X1%NRPR+XCREFR (J)

20 CONTINUE

¥Y=0.0
DO 30 N=i,é
~ Y=Y*NRPR+YCOEFR (N)
30 CONTINUE

IF (PSBDELR.B6T.X1) GO TO 40

W37RC=Y
GO TO 45

40 WS7RC=A*(PSQDELR-X1)%%2,+Y
45 WS7RX=WS7RC#*DEL(2) /THETA

%% NOTE: THIS CORRELATION BENERATES THE SEA-LEVEL REFERENCED (I.E.
CORRECTED) AIRFLOW. THEREFORE, THE LAST EQUATION ABOVE I8
USED TO GENERATED THE PHYSICAL AIRFLOW AT THE COMPRESSOR
INLET BASED ON MEASUREMENTS MADE AT PLANE 37.

W37 (1) =WS7LX
WS7R{1)=WST7LC
W37 (2)=W57RX
WS7R(2)=WS7RC

STREAM THRUST AND RAM DRAG CORRECTIONS TO BALANCE OUTFUTS

#¥% CALCULATE INLET STREAM THRUST AND RAM DRAG USING THE AIRFLOWS
CALCULATED FROM THE PLANE 2, PLANE 8, PLANE 15, AND PLANE 37
METHODS.

INLET MACH NUMBER ITERATION SCHEME
(GENERIC VERSION FOR ALL FOUR AIRFLOW CALCULATION METHODS)

INPUTS: COMPRESSOR INLET PHYSICAL AIRFLOW: WX
COMPRESSOR FACE AVERAGE TOTAL PRESSURE: PT2X
(LEFT OR RIGHT AS APPROPRIATE)

CTR=0
NX=1,8B8045%SQRT(TTR) /7,07 % (WX/PT2X)
IF (NX.6T.1.0) GO TO SO

IF (NX.LT.0.0) GO 7O 70
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XM5=1-8QRT (1-NX)
S  NXPRM=1,728#XM3*(1+0.2(XM3) #%2) #%-3
ERROR=NX-NXPRM
10 XM2=1-(1-XM5)#SQRT((1-XN)/ (1-NXPRM))
CTR=CTR+1
IF (ERROR.LT.0.0001) B0 TO 100
IF (CTR.GT.S50) 60 TO 100
XMS=XM2
60 70 S
S50 XM2=1.0
60 70 100
70  XM2=0.0
G0 TO 100

100 M=XM2
##% THIS ENDS THE INLET MACH ITERATION ROUTINE *xx

CALCULATE INLET MACH NUMBER FOR EACH OF THE FOUR INLET AIRFLOWS
CALCULATED.

INLET MACH: PLANE 2 METHOD

#%% NOTE: 1I=1 FOR LEFT HAND INLET
I=2 FOR RIGHT HAND INLET

WX=HW2(I)
PT2X=PT2(I)

APPLY ITERATION ROUTINE
M2(I)=MX
INLET MACH: PLANE B8 METHOD

%% NOTE: [I=1 FOR LEFT HAND INLET
I=2 FOR RIGHT HAND INLET

WX=WB(I)
PT2X=PT2(I1)

APPLY ITERATION ROUTINE

MB(I)=MX
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INLET MACH: PLANE 15 METHOD

x%% NOTE: I=1 FOR LEFT HAND INLET
I=2 FOR RIGHT HAND INLET

WX=W15(I)
PT2X=PT2(I)

APPLY ITERATION ROUTINE
MIS(I)=MX
INLET MACH: PLANE 57 HETHUﬂ

x#% NOTE: 1I=1 FOR LEFT HAND INLET
I=2 FOR RIGHT HAND INLET

WX=W37 (1)
PT2X=PT2(I)

APPLY ITERATION ROUTINE
MS7 (1) =MX
CALCULATE INLET STATIC PRESSURE BASED ON THE CALCULATED INLET MACH
INLET STATIC PRESSURE: PLANE 2 METHOD
PS2C(I)=PT2(1)#(140. 2% (M2(]) *#%2)) %%~3,3
INLET STATIC PRESSURE: PLANE 8 METHOD
PS2CB(I)=PT2(1)%(1+0.2%(MB(I)#%2) ) ¥%-3.3
INLET STATIC PRESSURE: PLANE 15 METHOD
PS2CIS(I)=PT2(I) % (1+0.2%(MIS(1) #%2))*%¥-3.3
INLET STATIC PRESSURE: PLANE 57 METHOD
PS2CS7(I)=PT2(I)*#(1+0.2# (MS7 (1) %%2))%¥-3.3
COMPRESSOR STREAM THRUST CALCULATION
PLANE 2 METHOD

F22=7.07%(PS2C(1) % (141, 0%M2(1) #%2)+PS2C(2) # (1+1,4¥M2(2) %%2) -24P0)
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PLANE B METHOD
F2B=7.07%(PS2CB(1)# {141, 4MB (1) ##2)+PS2CB(2) # (141, 4%MB(2) #42) -2%FP0)
PLANE 15 METHOD

F215=7.07% (PS2C1S(1) % (1+1,4%M15(1) %#2) +PS2C15(2) # (1+1.4#M15(2) *%2)
{ -2#P0)

PLANE 57 METHOD
F257=7.07*(P52C57(1)*(1+1.4;M57(l)**2)+PSZC57(2)*(1+1.4*M57(2)**2)
{ ~2%P0)

*#% AVERAGE INLET AIRFLOW #%*
W2A=(W2(1)+W2(2)) /2
WBA=(WB(1)+WB(2)})/2
WiSA=(W15(1)+W15(2)})/2

W37A=(W37(1)+W57(2))/2

#%% RAM DRAG #x#
FRAM2=(-2/32.174) *W2A*V0
FRAMB=(-2/32.174) *WBA*VO
FRAM15=(~-2/32.174) #W15A*V0
FRAMS7=(-2/32.174) *W57A*V0
#%% BALANCE OUTPUT CORRECTION TERMS FOR RAM DRAG AND STREAM THRUST %##
PLANE 2 METHOD:
AXIAL FORCE CORRECTION
ABASEZ2=F22+FRAM2+COS (ALPHAM)
NORMAL FORCE CORRECTION

NBASE2=FRAM2*SIN(ALPHAM)
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PLANE B METHOD:

AXIAL FORCE CORRECTION
ABASEE=F2B+FRAMB*COS (ALPHAM)

NORMAL FORCE CORRECTION
NBASEB=FRAMB*SIN(ALPHAM)

PLANE 15 METHOD:

AXIAL FORCE CORRECTION
ABASE15=F215+FRAM15#C0S (ALPHAM)

NORMAL FORCE CORRECTION
NBASE15=FRAM15*#SIN(ALPHAM)

PLANE 57 METHOD:

AXIAL FORCE CORRECTION
ABASES7=F257+FRAMS7%C0S5 (ALPHAM)

NORMAL FORCE CORRECTION
NBASES7=FRAMS7#SIN(ALPHAN)

*%% FLOW CORRECTION COEFFICIENTS %%+

AXIAL FORCE COEFFICIENT
CDIA2=ABASE2/(Q%3.221)
CDIAB=ABASEB/ (0%5.221)
CDIA15=ABASEL1S/(Q+5.221)
CDIAS7=ABASES7/(Q#*5.221)

NORMAL FORCE COEFFICIENT
CDIN2=NBASE2/(Q#%3.221)
CDINB=NBASES/(Q%5.221)
CDINIS5=NBASE15/(0#5.221)

CDINS7=NBASES7/ (0#5.221)
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*#%+% WEIGHT TARE CORRECTIONS ##%
NWT=-212%({-COS(ALPHAM))
AWT=-212% (SIN(ALPHAM))
PMUT=-X1%AWT+X2%NWT

#%% WHERE X! AND X2 ARE THE MOMENT ARM LENBTHS FROM MODEL C.G6. TO A/C
REFERENCE C.G. IN THE AXIAL AND NORMAL DIRECTIONS #x*#%

BALANCE QUTPUT COEFFICIENTS WITH WEIGHT TARES - BODY AXIS
#%%% NOTE: THE FOLLOWING TERMES ARE THE DESIGNATIONS USED BY THE NASA
AMES DATA REDUCTION PROGRAM FOR THE BALANCE OUTPUTS OF
NORMAL FORCE, AXIAL FORCE, AND PITCHING MOMENT:
.EX-TARE.N(1)
.EX-TARE.A(1)
EX-TARE.PH (1)
CNUC=( (. EX-TARE.N(1))+NWT)/ (8%3.221)
CAUC=((.EX-TARE.A(1))+ANT) / (B*3.221)
CMUC=( (L EX~TARE.PM(1))+PMUT)/(G%5.221%1,368)

BALANCE OUTPUT COEFFICIENTS WITH WEIBHT TARES - STABILITY AXIS
CLUC=CNUC*COS (ALPHAM) -CAUC*SIN(ALPHAM)
CDUC=CAUC#COS(ALPHAM) +CNUC*SIN (ALPHAM)

AIRFRAME COEFFICIENTS - BODY AXIS

WITH FLOW CORRECTIONS BASED ON PLANE 2 METHOD
CNFA2=CNUC+NCAVN+CDIN2

CAFA2=CAUC+ACAVN+CDIA2

CMNA2=CMUC+PMCAVN

WITH FLOW CORRECTIONS BASED ON PLANE 8 METHOD
CNFAB=CNUC+NCAVN+CDINS

CAFAB=CAUC+ACAVN+CDIAE

CMNAB=CMUC+PMCAVN
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WITH FLOW CORRECTIONS BASED ON PLANE 15 METHOD
CNFA15=CNUC+NCAVN+CDINIS
CAFA15=CAUC+ACAVN+CDIALS
CMNA15=CMUC+PMCAVN

WITH FLOW CORRECTIONS BASED ON PLANE 57 METHOD
CNFAS7=CNUC+NCAVN+CDINS?7
CAFAS7=CAUC+ACAVN+CDIASY

CMNAS7=CMUC+PMCAVN

AIRFRAME COEFFICIENTS - STABILITY AXIS

WITH FLOW CORRECTIONS BASED ON PLANE 2 METHOD
CLA2=CNFA2%COS (ALPHAM) -CAFA2*SIN(ALPHAM)
CDA2=CAFA2+COS(ALPHAM) +CNFA2%SIN(ALPHAM)
CLASG2=CLA2*ABS(CLA2)

WITH FLOW CORRECTIONS BASED ON PLANE 8 METHOD
CLAB=CNFAB#COS(ALPHAM) -CAFAB*SIN(ALPHAM)
CDAB=CAFAB*COS (ALPHAM) +CNFAB#SIN (ALPHAM)
CLAS@B=CLAB*ABS (CLAB)

WITH FLOW CORRECTIONS BASED ON PLANE 15 METHOD
CLA1S=CNFA15%COS (ALPHAM) -CAFA15%SIN(ALPHAM)
CDA15=CAF915*CDS(ALPHAH)+CNFA;5*SIN(ALPHAM)
CLASQ15=CLAIS*ABS(CLAIS)

WITH FLOW CORRECTIONS BASED ON PLANE 37 METHOD
CLAS7=CNFAS7%COS (ALPHAM) -CAFAS7*SIN (ALPHAM)
CDAS7=CAFAS57+COS (ALPHAM) +CNFAS7*SIN(ALPHAM)

CLASQ57=CLAS7*ABS(CLAGY)
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T3TAL AIRCFRAFT (AIRFRAME+NOZZLES) STABILITY AXIS COEFFICIENTS

¥%% NOTE: THE COEFFICIENTS FROM THE PLANE B METHOD
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PLANE 2 METHOD
CL2=CLA2+CLN
CD2=CDA2+CDN
CDAROTF2=CDAZ2+CDARONF
CM2=CMNAZ+CPMN
CLSQ2=CL2*ABS(CL2).
PLANE B METHOD
CLB=CLAB+CLN
CDE=CDAB+LDN
CDAROTF8=CDAB+CDARONF
CMB=CMNAB+CPMN
CLS@B8=CLB*ABS(CLA)
PLANE 15 METHOD
CLIS=CLA15+CLN
CD15=CDA15+CDN
CDAROTF13=CDA1S5+CDARONF
CM15=CMNALS+CPMN
CLS@15=CL15%ABE(CL1S)
PLANE 37 METHOD
CL37=CLAS7+CLN
CD57=CDAS7+LDN
CDAROTF37=CDAS7+CDARONF
CM57=CMNAS7+CFMN

CLSB57=CL37#ABS(CLS7)

WERE CHOSEN AS THE -
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PRIMARY FARAMETERS IN THE CONVENTIONAL MODE ANALYSIS. THE
PLANE 57 COEFFICIENTS WERE USED IN THE CMAFS ANALYSIS.

#4% CAFTURE AREA RATIO (MASS FLOW RATIO) ###
MDAT=SORT(0.8447%XM0*%2+0, 1688%XMO*%4)

NOTE: I={ FOR LEFT HAND INLET
I=2 FDR RIGHT HAND INLET

AC2(I)=(W2(I1)*SART(TTR) )}/ (PO*MDOT)
AOB(I)=(WB(I)*SART(TTR))/(PO*MDOT)
AOLIS(IN=(WIS(I)*SART(TTR) )/ (PO*MDOT)
AQS7(1)=(WS7(1)%#5RBRT(TTR))/(PO*MDOT)
CAPTURE AREA RATIO CALCULATION
CAP2(1)=A02(1)/5.46
CAPB(I)=A0B(I)/5.464
CAP1S(I)=A015(I)/5.48
CAPS7(1}=A037(1)/5.46

#%#% NOTE: THE PLANE 8 MFR WAS THE PARAMETER USED FOR THE FLOW-THROUGH
MODE. THE PLANE 57 MFR WAS USED FOR THE CMAPS ANALYSIS,

##% NOIZLE PRESSURE RATIO CALCULATION %%+
NOZILE TOTAL PRESSURE INSTRUMENTATION FAILURES DURING THE JET-EFFECTS
AND CMAPS MODES TESTING NECESSITATED THE FOLLOWING SCHEME OF
CALCULATING NDZILE TOTAL PRESSURE FROM THE TOTAL AIRFLOW THROUGH THE
NOZZLE. THE TEXT IN SECTION 3.0 OF THIS REPORT FURTHER DESCRIBES THE
PROCESS.

*¥%% JET-EFFECTS MODE **#

WB(I)=WDV(I)+WMIX(D)
NPR(I}=(WB(I)#SQRT(TT7(I1))/(PO*ALL*0.503)

ALL=THROAT AREA OF THE ALBEN DEPENDING ON POWER SETTING AND VECTOR
ANGLE
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C ##% CMAPS MODE ONLY *%x

c
WIF(F)=WS7(1)+WDVII)-WBV(])
»
c THE FOLLOWING ITERATION SCHEME IS USED TO CALCULATE NPR BASED ON WJF
C
TERM=(WJF (1) #SQRT(TT7))/(PO#5.151)
NPRX (1) =TERM/0.5150
J=0
03 J=d+1,
c
IF (NPRX(J).LT.1.01) GO TO 10
IF (NPRX{J).LE.1,50) B0 TO 30
C
TAP(J)=0.5150
G0 TO 50
c
10 TAP(J)=0.3000
G0 TO SO
£
30 TAP(J)=~7.7494+146.7138%NPRX(J)-11.2561#NPRX(J)#%2+2,. 5231 #NPRX(J) *%3
£
50 NPRX(J+1)=TERM/TAP(J)
£
TEST=ABS ( (NPRX(J+1)-NPRX(J))/NPRX(J+1))
£
IF (TEST.LT.0.001) GO TO 100
60 TO 035
C
100 NPR(I)}=NPRX(J+1)
c
NPRA= (NPR(1)+NPR(2})) /2
£
EPR(I)=NPR{I)*PO/PT2(I1)
c
This concludes the 1list of data reduction egquations for the three test
modes. :
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